2018年西安交通大学经济与金融学院432统计学[专业硕士]考研强化五套模拟题
● 摘要
一、简答题
1. 二项分布与超几何分布的适用场合有什么不同?它们的均值和方差有什么区别?
【答案】(1)从理论上讲,二项分布只适合于重复抽样(即从总体中抽出一个个体观察完后放回总体,然后再抽下一个个体)。但在实际抽样中,很少采用重复抽样。不过,当总体的元素数目况很大而样本量, 相对于AT 来说很小时,二项分布仍然适用。
但如果是采用不重复抽样,各次试验并不独立,成功的概率也互不相等,而且总体元素的数目很小或样本量 «相对于W 来说较大时,二项分布就不再适用,这时,样本中“成功”的次数则服从超几何概率分布。
(2)若X 服从二项分布若Y 服从超几何分布则则
2. 解释多重判定系数和调整的多重判定系数的含义和作用。
【答案】(1)多重判定系数是多元回归中的回归平方和占总平方和的比例,它是度量多元回归方程拟合程度的一个统计量,反映了在因变量y 的变差中被估计的回归方程所解释的比例,其计算公式为
(2)调整的多重判定系数考虑了样本量(n )和模型中自变量的个数(k )的影响,这就使得
的值永远小于
而且的值不会由于模型中自变量个数的增加而越来越接近1,
其计算公式为
3. 简述季节指数的计算步骤。
【答案】以移动平均趋势剔除法为例,计算季节指数的基本步骤为:
,(1)计算移动平均值(如果是季度数据采用4项移动平均,月份数据则采用12项移动平均)
并将其结果进行“中心化”处理,也就是将移动平均的结果再进行一次2项的移动平均,即得出“中心化移动平均值”
(2)计算移动平均的比值,也称为季节比率,即将序列的各观察值除以相应的中心化移动平均值,然后再计算出各比值的季度(或月份)平均值。
(3)季节指数调整。由于各季节指数的平均数应等于1或100%,若根据第2步计算的季节
比率的平均值不等于1时,则需要进行调整。具体方法是:将第(2)步计算的每个季节比率的平均值除以它们的总平均值。
4. 说明回归模型的假设以及当这些假设不成立时的应对方法。
【答案】(1)多元回归模型的基本假定有: ①自变量
③对于自变
量
④误差项是一个服从正态分布的随机变量,且相互独立,即
(2)若模型中存在多重共线性时,解决的方法有:
第一,将一个或多个相关的自变量从模型中剔除,使保留的自变量尽可能不相关。
第二,如果要在模型中保留所有的自变量,那就应该:避免根据统计量对单个参数进行检验;对因变量Y 值的推断(估计或预测)限定在自变量样本值的范围内。
若模型中存在序列相关时,解决的方法有:如果误差项不是相互独立的,则说明回归模型存在序列相关性
,这时首先要查明序列相关产生的原因。如果是回归模型选用不当,则应改用适当的回归模型;如果是缺少重要的自变量,则应増加自变量;如果以上两种方法都不能消除序列相关性,则需采用迭代法、差分法等方法处理。
若模型中存在异方差性时,解决的方法有:当存在异方差性时,普通最小二乘估计不再具有最小方差线性估计的性质,而加权最小二乘估计则可以改进估计的性质。加权最小二乘估计对误差项方差小的项加一个大的权数,对误差项方差大的项加一个小的权数,因此加强了小方差性的地位,使离差平方和中各项的作用相同。
5. 简述非抽样误差类型。
【答案】非抽样误差是相对抽样误差而言的,是指除抽样误差之外的,由于其他原因引起的样本观察结果与总体 真值之间的差异。无论是概率抽样、非概率抽样,或是在全面调查中,都有可能产生非抽样误差。非抽样误差有以下几种类型:
(1)抽样框误差,是指抽样框中的单位与研宄总体的单位不存在一一对应的关系,使用这样的抽样框抽取样本就会出现一些错误。
(2)回答误差,是指被调查者在接受调查时给出的回答与真实情况不符。导致回答误差的原因有多种,主要有理答误差、记忆误差和有意识误差。
(3)无回答误差,是指被调查者拒绝接受调查,调查人员得到的是一份空白的答卷。
(4)调查员误差,是指由于调查员的原因而产生的调查误差。
是非随机的、固定的,且相互之间互不相关(无多重共线性); 的方
差都相同,且不序列相关,
即
的所有
值②误差项s 是一个期望值为0的随机变量,即
(5)测量误差,是指如果调查与测量工具有关,则很可能产生测量误差。
6. 利用增长率分析时间序列时应注意哪些问题?
【答案】在应用増长率分析实际问题时,应注意以下几点:
(1)当时间序列中的观察值出现0或负数时,不宜计算增长率。这是因为对这样的序列计算增长率,要么不符合数学公理,要么无法解释其实际意义;
(2)在有些情况下,不能单纯就增长率论増长率,要注意增长率与绝对水平的结合分析。
7. 中心极限定理。
【答案】设随机变量
令
则
也就是说,当n 趋于无穷大时,的分布趋向于标准正态分布 相互独立(S 卩,对任意给定的相互独立)且服从同一分布,该分布存在有限的期望和方
差
8. 简述系数、c 系数、系数的各自特点。
【答案】(1)
相关系数是描述列联表数据相关程度最常用的一种相关系数。它的计算公式为:式中,《为列联表中的总频数,也即样本量。说系数适合
这个范围。
列联表的情况。C 系数的列联表,是因为对于
计算公式为:
列联表中的数据,计算出的系数可以控制在(2)列联相关系数又称列联系数,简称c 系数,主要用于大于
当列联表中的两个变量相互独立时,系数c=0, 但它不可能大于1。c 系数的特点是,其可能的最大值依赖于列联表的行数和列数,且随着R 和C 的增大而增大。
(3)克莱默提出了 V 系数。V 系数的计算公式为:
当两个变量相互独立时,
果列联表中有一维为2,即当两个变量完全相关时,所以V 的取值在之间。如则V 值就等于值。