2018年西安财经学院统计学院432统计学[专业硕士]考研仿真模拟五套题
● 摘要
一、简答题
1. 简述季节指数的计算步骤。
【答案】以移动平均趋势剔除法为例,计算季节指数的基本步骤为:
,(1)计算移动平均值(如果是季度数据采用4项移动平均,月份数据则采用12项移动平均)
并将其结果进行“中心化”处理,也就是将移动平均的结果再进行一次2项的移动平均,即得出“中心化移动平均值”
(2)计算移动平均的比值,也称为季节比率,即将序列的各观察值除以相应的中心化移动平均值,然后再计算出各比值的季度(或月份)平均值。
(3)季节指数调整。由于各季节指数的平均数应等于1或100%,若根据第2步计算的季节比率的平均值不等于1时,则需要进行调整。具体方法是:将第(2)步计算的每个季节比率的平均值除以它们的总平均值。
2. 在盒子图(箱线图)的作图中,会使用哪些描述指标。
【答案】箱线图(Boxplot )也称箱须图(Box-whiskerPlot ),是利用数据中的五个统计量:最小值、第一四分位数、中位数、第三四分位数与最大值来描述数据的一种方法,它也可以粗略地看出数据是否具有有对称性,分布的分散程度等信息,特别可以用于对几个样本的比较。由上面叙述可知,箱线图使用的描述指标有:最小值、第 一四分位数、中位数、第三四分位数与最大值。
3. 简述指数平滑法的基本含义。
【答案】指数平滑法是对过去的观察值加权平均进行预测的一种方法,该方法使得第
形式,观察值时间越远,其权数也跟着呈现指数的下降,因而称为指数平滑。
使用指数平滑法时,关键的问题是确定一个合适的平滑系数因为不同的会对预测结果产生
不同的影响。当
值
大的权数;同样时,预测值仅仅是重复上一期的预测结果;
当时,预测值就是上一期实际
越接近1,模型对时间序列变化的反应就越及时,因为它对当前的实际值赋予了比预测值更越接近0, 意味着对当前的预测值赋予更大的权数,因此模型对时间序列变化的
但实际应用时,还应考虑预测误差,这里仍用误差期的预测值等于
期的实际观察值与第期预测值的加权平均值。指数平滑法是加权平均的一种特殊反应就越慢。一般而言,当时间序列有较大的随机波动时,
宜选较大的以便能很快跟上近期的变化,当时间序列比较平稳时,宜选较小的
均方来衡量预测误差的大小,确定时,可选择几个进行预测,然后找出预测误差最小的作为最后的值。
4. 什么是指数?它有哪些性质?
【答案】指数,或称统计指数,是分析社会经济现象数量变化的一种重要统计方法。它有如下一些性质:
(1)相对性。指数是总体各变量在不同场合下对比形成的相对数,它可以度量一个变量在不同时间或不同空间的相对变化,如一种商品的价格指数或数量指数。它也可以反映一组变量的综合变动,比如综合物价指数是根据一组商品价格的相对变化并给每种商品的相对数定以不同权数计算出来的,这种指数称为综合指数。另外根据对比两变量所处的是不同时间还是不同空间,它们计算出来的指数分时间性指数和区域性指数。
(2)综合性。综合性说明指数是一种特殊的相对数,它是由一组变量或项目综合对比形成的。比如,由若干种商品和服务构成的一组消费项目,通过综合后计算价格指数,以反映消费价格的综合变动水平。
(3)平均性。平均性含义有二:一是指数进行比较的综合数量是作为个别量的一个代表,这本身就具有平均的性质;二是两个综合量对比形成的指数反映了个别量的平均变动水平,比如物价指数反映了多种商品和服务项目价格的平均变动水平。
5. 简述判定系数的含义和作用。
【答案】(1)判定系数的含义
回归平方和占总平方和的比例称为判定系数,记为其计算公式为:
(2)判定系数的作用
判定系数测度了回归直线对观测数据的拟合程度。若所有观测点都落在直线上,残差平方
和
可见
x 完全无助于解释y 的变差,拟合是完全的;如果y 的变化与x 无关,此时
的取值范围是则
越接近于7,表明回归平方和占总平方和的比例越大,回归直线与各观测点越接近,用x 的变化来解释y 值变差的部分就越多,回归直线的拟合程度就越好;反之越接近于0, 回归直线的拟合程度就越差。
6. 欲调查广州市初中学生的身高情况,随机抽取100名广州市初中学生,测量了身高。
(1)用此例说明这几个统计概念,总体(population ), 样本(sample ), 参数(pammeter ), 统计量(statistics )。
(2)请说明如何对这100例身高数据进行描述性统计分析。
【答案】(1)总体(population )是包含所研宄的全部个体(数据)的集合,它通常由所研宄的一些个体组成。 本例中的总体是广州市所有初中学生。
样本(sample )是从总体中抽取的一部分元素的集合,构成样本的元素的数目称为样本量(sample size)。 本例中的样本是随机抽取的100名广州市初中学生,其中样本量为100。
参数(parameter )是用来描述总体特征的概括性数字度量,它是研究者想要了解的总体的某种特征值。本 例中广州市所有初中学生的平均身高即是一个参数。
统计量(statistic )是用来描述样本特征的概括性数字度量。它是根据样本数据计算出来的一个量,由于 抽样是随机的,因此统计量是样本的函数。随机抽取的100名广州市初中学生的平均身高即是一个统计量。
(2)所谓描述性统计分析,就是对一组数据的各种特征进行分析,以便于描述测量样本的各种特征及其所 代表的总体的特征。主要包括集中趋势的描述,可计算身高的均值,中位数和众数,也可采用箱线图直观的反映 数据的集中趋势以及是否存在异常值;离散程度的描述,可计算身高的方差,变异系数,四分位差或极差,也可 采用折线图或散点图等直观反映数据的离散程度;分布的偏态与峰度描述,可计算偏度和峰度值,或采用茎叶图 或直方图直观的反映分布是否与正态分布或单峰偏态分布逼近。
7. 中心极限定理。
【答案】设随机变量
令
则
也就是说,当n 趋于无穷大时,
8. 简述方差分析的基本原理。
【答案】方差分析通过检验各总体的均值是否相等来判断分类型自变量对数值型因变量是否有显著影响。在方差分析中,数据的误差是用平方和来表示的,总平方和可以分解为组间平方和与组内平方和。组内误差只包含随机误差,而组间误差既包括随机误差,也包括系统误差。如果组间误差中只包含随机误差,而没有系统误差。这时,组间误差与组内误差经过平均后的数值就应该很接近,它们的比值就会接近1; 反之,如果在组间误差中除了包含随机误差外,还会包含系统误差,这时组间误差平均后的数值就会大于组内误差平均后的数值,它们之间的比值就会大于1。当这个比值大到某种程度时,就可以说因素的不同水平之间存在着显著差异,也就是自变量对
相互独立(S 卩,对任意给定的相互独立)且服从同一分布,该分布存在有限的期望和方
差的分布趋向于标准正态分布