当前位置:问答库>考研试题

2018年西安交通大学公共政策与管理学院718应用统计学之统计学考研强化五套模拟题

  摘要

一、简答题

1. 说明回归模型的假设以及当这些假设不成立时的应对方法。

【答案】(1)多元回归模型的基本假定有: ①自变量

③对于自变

④误差项是一个服从正态分布的随机变量,且相互独立,即

(2)若模型中存在多重共线性时,解决的方法有:

第一,将一个或多个相关的自变量从模型中剔除,使保留的自变量尽可能不相关。

第二,如果要在模型中保留所有的自变量,那就应该:避免根据统计量对单个参数进行检验;对因变量Y 值的推断(估计或预测)限定在自变量样本值的范围内。

若模型中存在序列相关时,解决的方法有:如果误差项不是相互独立的,则说明回归模型存在序列相关性

,这时首先要查明序列相关产生的原因。如果是回归模型选用不当,则应改用适当的回归模型;如果是缺少重要的自变量,则应増加自变量;如果以上两种方法都不能消除序列相关性,则需采用迭代法、差分法等方法处理。

若模型中存在异方差性时,解决的方法有:当存在异方差性时,普通最小二乘估计不再具有最小方差线性估计的性质,而加权最小二乘估计则可以改进估计的性质。加权最小二乘估计对误差项方差小的项加一个大的权数,对误差项方差大的项加一个小的权数,因此加强了小方差性的地位,使离差平方和中各项的作用相同。

2. 单因素方差分析的实质是什么?并说明单因素方差分析的步骤。

【答案】单因素方差分析的实质是研宄一个分类型自变量对一个数值型因变量的影响。 单因素方差分析的步骤为:

(1)按要求检验的个水平的均值是否相等,提出原假设和备择假设。

(2)构造检验统计量,计算各样本均值样本总均值误差平方和 是非随机的、固定的,且相互之间互不相关(无多重共线性); 的方

差都相同,且不序列相关,

的所有

值②误差项s 是一个期望值为0的随机变量,即

(3)计算样本统计量

(4

)统计决策。比较统计量 的值。若拒绝原假设;反之,不能拒绝原假设。

3. 多元回归分析中为什么需要使用修正的判定系数(可决系数)来比较方程的拟合效果?是如何计算的?

【答案】在多元线性回归分析中,常用修正的判定系数,而不用多重判定系数来衡量估计模

型对样本观测值的拟合优度。这是由于多重判定系数

随着样本解释变量个数的增加

来越高(即的值越是解释变量个数的增函数)。也就是说,在样本容量不变的情况,在模型中增加新

不是一个合适的指标,需加以的解释变量不会改变总离差平方和,但可能增加回归平方和,减少残差平方和,从而可能改变模型的解释功能。因此在多元线性回归模型之间比较拟和优度时,

调整。而修正判定系数

归模型方面要优于多重判定系数修正判定系数的计算公式为

4. 在研究总体特征时,往往采用抽样调查,试给出采用抽样的理由。

【答案】

抽样调查()是一种非全面调查,它是按照随机原则从总体中抽取一部分单位作为样本进行观察研宄,以抽样样本的指标去推算总体指标的一种调查。随机原则要求所有调查单位都有一定的概率被抽取。根据抽选样本的方法,抽样调查可以分为概率抽样和非概率抽样两类。概率抽样是按照概率论和数理统计的原理从调查研宄的总体中,根据随机原则来抽选样本,并从数量上对总体的某些特征作出估计推断,对推断出可能出现的误差可以从概率意义上加以控制。习惯上将概率抽样称为抽样调查。抽样调查同其他调查比较,具有 如下几个特点:第一,样本单位按随机原则抽取,排除了主观因素对选取样本单位的影响;第二,能够根据部分 调查的实际资料对调查对象的总体的数量特征进行推断,从而达到对调查总体的认识;第三,在抽样调查中会存 在抽样误差,但是这个误差可以事先计算并加以控制。因此,抽样调查既能节省人力、物力、财力,又可以提高资料的时效性,而且能取得比较正确的全面统计资料,具有许多优点。

5. 简述时间序列的组成要素。

【答案】时间序列的组成要素分为4种,即趋势或长期趋势、季节性或季节变动、周期性或循环波动、随机性或不规则波动。

(1)趋势是时间序列在长时期内呈现出来的某种持续向上或持续下降的变动,也称长期趋势;

其值不会随着解释变量个数k 的増加而增加,因此在用于估计多元回

(2)季节性也称季节变动,它是时间序列在一年内重复出现的周期性波动;

(3)周期性也称循环波动,它是时间序列中呈现出来的围绕长期趋势的一种波浪形或振荡式变动;

(4)随机性也称不规则波动,是指偶然性因素对时间序列产生影响,致使时间序列呈现出某种随机波动。

二、计算题

6. 投一枚硬币,直到出现正面为止,记下在第k 次投掷时首次出现正面的频数

问是否相信该硬币是均匀对称的。

1

【答案】设首次出现正面需投掷硬币的次数为X ,若硬币是均匀的,则第k 次投掷时首次出现正面的概率为

该硬币不是均匀对称的

在原假设的条件下,&次投掷首次出现正面的期望频数为:

2 从而可得表2。 依据题意我们可以对其分布建立假设,即

如表1所示,该硬币是均匀对称的,即出现正面的概率和出现反面的概率相等

由表1可得,检验统计量

拒绝原假设,即认为硬币是均匀的。

临界值

为其中的自由度

为所以不能为区间个数,k 为待估参数的个数)。由于