2017年兰州交通大学结构力学复试仿真模拟三套题
● 摘要
一、计算题
1. 求图(a )所示体系在稳态受迫振动时的最大弯矩图
,
为分布质量,
图
【答案】在支座B 处加附加刚臂如图(b )所示,绘单位弯矩图如图(c )所示,绘原荷载作用下的弯矩图如图(d )所示。
用刚度法建立振动微分方程:
由
代入相关系数和自由项得:
设
代入上式,两边消去
得位移幅值方程:
由己知条件所以,
代入得:
2. 试分析图(a )所示体系的几何组成。
图
【答案】A 支座的链杆与AB 杆构成二元体,可去除。同理,F 支座的链杆FE 杆构成二元体,可去除。再依次去除二元体C-B-D 和C-E-D ,则体系仅剩C 、D 两处支座的链杆,如图(b )所示。因此,原体系为几何可变体系。
3. 试求图1示两角钢截面的极限弯矩
设材料的屈服应力为
图1
【答案】设等面积轴距双角钢上边缘的距离为轴的面积矩为
如图所示;等面积轴上方图形面积对等面积
同理等面积轴下方面积对等面积轴的面积矩为
图2
等面积轴上方面积为则可计算两个面积矩
极限弯矩
下方面积为.
两面积相等,计算出
4. 试求图1示变截面梁的极限荷载及相应的破坏机构,设:
图1
【答案】
采用试算法。
所示。
假设A 、B 出现塑性铰,其图,如
图2
可求得
示,通过(b )图求得,移图如(c )所示。虚功方程为
代入,
C 点出现塑性铰,内力不满足屈服条件。假设A 、其M 图如
所
内力满足屈服条件,所以用虚功法计算极限荷载,其虚位
得到
(b )采用试算法 假设
点出现塑性铰,其M 图如(a )所示