2017年大连海事大学X38概率论与数理统计复试仿真模拟三套题
● 摘要
一、计算题
1. —个质点从平面上某点开始,等可能地向上、下、左、右四个方向随机游动,每次游动的距离为1,求经过2n 次游动后,质点回到出发点的概率.
【答案】因为每次都等可能地向上、下、左、右四个方向随机游动,所以经过2n 次游动后,样本空间中共有
设所求事件为样本点共有本点总数
它为
由此得所求概率为
可算得:
2. 掷一颗骰子60次,结果如:
表
试在显著性水平为0.05下检验这颗骰子是否均匀.
【答案】这是一个分布拟合优度检验,总体总共分6类. 若记出现点数i 的概率为的假设为知,
检验的统计量为
由于
未落入拒绝域,故不拒绝原假设. 在显著性水平为0.05下可以认为这颗骰子是均
匀的. 此处检验的p 值为
这里k=6,
检验拒绝域为
若取
则要检验
则查表
个样本点. 事件
发生要求(1)上下游动次数相等;(2)左右游动次数相等,否则不
个,当k 从0到n 累加起来就得事件
所含样
可能回到出发点,若上、下游动各k 次,那么左、右游动只能各n-k 次,这样共游动2n 次,此种
3. 假设
(1)A ,B 不相容; (2)A ,B 独立; (3)
在以下情况下求P (B ):
【答案】由加法公式及其变形可知: (1)因为A ,B 不相容,所以(
2
)
因所以
为
A 由此得
,
B
独
立
,
所
以
由
得P (B )=5/6.
(3)因为
4. 若总体X 服从如下柯西分布:
而
是它的一个样本,试求μ的估计量.
最小,则得
很难说
的一个合适的估计量,因
【答案】由于柯西分布不存在数学期望,因此不能用一阶矩法估计得到μ的估计量. 若用最小二乘法,即使
为这时无偏性、有效性都失去意义,而且同分布(读者自行验证),说明
也没有起到汇集
的信息的作用,因而,这个估计量的相合性也就无从谈起. 因此,我们转而讨论的最大似然估计. 其似然函数为
其对数似然函数为
对求导可得对数似然方程为
这个方程只能求数值解,比如用牛顿迭代法. 由于μ是总体分布的中位数,因此可以用样本中位数作为迭代的初值. 所求得的这个数值解即为的最大似然估计. 从似然角度看,该方法得到的估计要比样本中位数估计更好些.
5. 假设人体身高服从正态分布,今抽测甲、乙两地区18岁〜25岁女青年身高得数据如下:甲地区抽取10名,样本均值1.64m ,样本标准差0.2m ; 乙地区抽取10名,样本均值1.62m , 样本标准差0.4m. 求:
(1)两正态总体方差比的置信水平为95%的置信区间; (2)两正态总体均值差的置信水平为95%的置信区间. 【答案】设设条件
,
为甲地区抽取的女青年身高,
为乙地区抽取的女青年身高,由题
(1)的的置信区间为
由此,
此处,
m=n=10, 查表得信区间为
的置信水平为95%的置
(2)由(1)方差相等,此时,
查表得
故两正态总体均值差的置信水平为95%的置信区间为
还有另一种解法就是不对方差相等作假定,而采用近似方法求均值差的置信区间,由于
从而两正态总体均值差的置信水平为95%的近似置信区间为
这二个置信区间相差不算太小,所以在应用中条件“方差相等”是否成立是要加以考证的. 查表知
6. 设在木材中抽出100根,测其小头直径,得到样本平均数为问该批木材小头的平均直径能否认为不低于12cm (取
【答案】这里的原假设和备择假设分别为
拒绝域为
当取
时,
检验统计量
u 值落入拒绝域内,因此拒绝原假设,不能认为该批木材小头的平均直径不低于12cm.
7. 设二维随机变量(X , Y )的联合密度函数如下, 试求(X , Y )的协方差矩阵.
(1)(2)
【答案】(1)因为
可分离变量, 所以X 与Y 相互独立, 由此知
的置信水平为95%的置信区间包含1, 因此有一定理由假定两个正态总体的
,样本标准差s=2.6cm,
)?
又因为
相关内容
相关标签