2017年成都理工大学统计学原理之统计学复试仿真模拟三套题
● 摘要
一、简答题
1. 抽样误差影响因素分析。
【答案】影响抽样误差的因素主要有:(1)样本单位数目。在其他条件不变的情况下,抽样数目越多,抽样误差越小;抽样数目越少,抽样误差越大。当n=N时,就是全面调查,抽样误差此时为零。(2)总体标志变动程度。 在其他条件不变的情况下,总体标志变异程度越大,抽样误差越大;总体变异程度越小,抽样误差越小。(3)抽样方法。一般讲,不重复抽样的抽样误差要小于重复抽样的抽样误差。当n 相对N 非常小时,两种抽样方法的 抽样误差相差很小,可忽略不计。(4)抽样组织方式。采用不同的抽样组织方式,也会有不同的抽样误差。一般讲分层抽样的抽样误差较小,而整群抽样的抽样误差较大。
2. 解释总平方和、回归平方和、残差平方和的含义,并说明它们之间的关系。
【答案】(1)总平方和(S^T)是实际观测值与其均值的离差平方和,即
(2)回归平方和(^狀)是各回归值来解释的变差部分。
(3)残差平方和(SSE )是各实际观测值与回归值的离差平方和,即
称为误差平方和。
(4)三者之间的关系
3. 多元线性回归模型中有哪些基本的假定?
【答案】多元回归模型的基本假定有: (1)自变量(3)对于自变
量
(4)误差项是一个服从正态分布的随机变量,且相互独立,即
4. 简述相关系数和函数关系的差别。
【答案】变量之间的关系可分为两种类型:函数关系和相关关系。 (1)函数关系
第 2 页,共 26 页
与实际观测值的均值y 的离差平方和,即
其反映了在y 的总变差中由于x 与y 之间的线性关系引起的y 的变化部分,它是可以由回归直线
它是除了
的线性影响之外的其他因素对变差的作用,是不能由回归直线来解释的变差部分。其又
是非随机的、固定的,且相互之间互不相关(无多重共线性);
的方
差
都相同,且不序列相关,
即
的所有
值
(2)误差项是一个期望值为0的随机变量,即
设有两个变量
和
(2)相关关系
变量随变量一起变化,并完全依赖于当变量取某个数值时,依
确定的关系取相应的值,则称是的函数。由此可见函数关系是一种一一对应的确定性关系。
相关关系是指变量之间确实存在的但关系值不固定的相互依存关系。在这种关系中,当一个(或几个)变量的值确定以后,另一个变量的值虽与它(或它们)有关,但却不能完全确定。这是一种非确定的关系。
5. 简述时间序列的组成要素。
【答案】时间序列的组成要素分为4种,即趋势或长期趋势、季节性或季节变动、周期性或循环波动、随机性或不规则波动。
(1)趋势是时间序列在长时期内呈现出来的某种持续向上或持续下降的变动,也称长期趋势;(2)季节性也称季节变动,它是时间序列在一年内重复出现的周期性波动;
(3)周期性也称循环波动,它是时间序列中呈现出来的围绕长期趋势的一种波浪形或振荡式变动;
(4)随机性也称不规则波动,是指偶然性因素对时间序列产生影响,致使时间序列呈现出某种随机波动。
6. 欲调查广州市初中学生的身高情况,随机抽取100名广州市初中学生,测量了身高。
(1)用此例说明这几个统计概念,总体(population ), 样本(sample ), 参数(pammeter ), 统计量(statistics )。
(2)请说明如何对这100例身高数据进行描述性统计分析。
【答案】(1)总体(population )是包含所研宄的全部个体(数据)的集合,它通常由所研宄的一些个体组成。 本例中的总体是广州市所有初中学生。
样本(sample )是从总体中抽取的一部分元素的集合,构成样本的元素的数目称为样本量(sample size)。 本例中的样本是随机抽取的100名广州市初中学生,其中样本量为100。
参数(parameter )是用来描述总体特征的概括性数字度量,它是研究者想要了解的总体的某种特征值。本 例中广州市所有初中学生的平均身高即是一个参数。
统计量(statistic )是用来描述样本特征的概括性数字度量。它是根据样本数据计算出来的一个量,由于 抽样是随机的,因此统计量是样本的函数。随机抽取的100名广州市初中学生的平均身高即是一个统计量。
(2)所谓描述性统计分析,就是对一组数据的各种特征进行分析,以便于描述测量样本的各种特征及其所 代表的总体的特征。主要包括集中趋势的描述,可计算身高的均值,中位数和众数,也可采用箱线图直观的反映 数据的集中趋势以及是否存在异常值;离散程度的描述,可计算身高的方差,变异系数,四分位差或极差,也可 采用折线图或散点图等直观反映数据的离散程度;分布的偏态与峰度描述,可计算偏度和峰度值,或采用茎叶图 或直方图直观的反映分布是否与正态分布或单峰偏态分布逼近。
第 3 页,共 26 页
二、计算题
7. 假设本,令
求满足下列各式的常数a ,b 和c :
【答案】由条件知:因此
和
为来自总体
的两个相互独立的简单随机样
所以
查表得又
即
解得
即
解得
查
表
得
8. 下面是CAILY 大学田径队纪录的1/4英里和1英里赛跑每次所用时间的数据(以分钟计)。
根据这些数据,一个教练评论说,
英里所用的时间已经趋于一致了,1英里所用时间差
英里和1英里所用时间的样本均值和标准差。
别较大。请用适当的指标来概括数据的特性并说明该教练的说法是否合理?
【答案】根据已知数据,可以分别计算出
第 4 页,共 26 页
相关内容
相关标签