当前位置:问答库>考研试题

2017年山东师范大学概率统计(同等学力加试)考研复试核心题库

  摘要

一、计算题

1. 一个人把六根草紧握在手中,仅露出它们的头和尾,然后随机地把六个头两两相接,六个尾也两两相接,求放开手后六根草恰巧连成一个环的概率.

【答案】因为“六个尾两两相接”不会影响是否成环,所以只需考虑“六个头两两相接”可能出现的情况,若考虑头两两相接的前后次序,则“六个头两两相接”共有6! 种不同结果,即先从6个头中任取1个,与余下的5个头中的任1个相接;然后从未接的4个头中任取1个,与余下的3个头中的任1个相接;最后从未接的2个头中任取1个,与余下的最后1个头相接,这总共有6! 种可能接法,这是分母,而要成环则第一步从6个头中任取1个,此时余下的5个头中有1个不能相接,只可与余下的4个头中的任1个相接;第二步从未接的4个头中任取1个,与余下的2个头中的任1个相接;最后从未接的2个头中任取1个,与余下的最后1个头相接,

这总共有

种可能接法,由此得所求概率为

2. 设二维随机变量(X , Y )的联合密度函数为

求X 与Y 的协方差及相关系数. 【答案】先求X 与Y 的期望与方差

所以

又因为

所以X 与Y 的协方差及相关系数为

3. 假定电话总机在某单位时间内接到的呼叫次数服从泊松分布,现观测了40个单位时间,接到的呼叫次数如下:

在显著性水平0.05下能否认为该单位时间内平均呼叫次数不低于2.5次?并给出检验的p 值. 【答案】以X 记电话总机在该单位时间内接到的呼叫次数,可认为设为

因而,检验的统计量为若取拒绝原假设.

由于u 在成立时,服从标准正态分布,因而检验的p 值为

4. 设随机变量X 服从(-1,2)上的均匀分布,记

试求Y 的分布列. 【答案】因为

5. 设总体X

的分布函数为

是来自总体的简单随机样本,(1)求

量;(3)是否存在常数a ,使得对任意的

都有

其中为未知的大于零的参数

;(2)求

的极大似然估计

所以Y 的分布列为

检验的拒绝域为

由于u=—2.1落入拒绝域,故

由于n=40较大,故可以采用大样本检验,泊松分布的均值和方差都是

,则要检验的假

【答案】(1)由题意,先求出总体X 的概率密度函数

(2)极大似然函数为则当所有的观测值都大于

零时

(3)由于可知

的极大似然估计量为

独立同分布,显然对应的

由辛钦大数定律,

可得

故存在常数

使得对任意的

都有

也独立同分布,又有(1)

再由(1)(2)可知

6. 有七种人造纤维,每种抽4根测其强度,得每种纤维的平均强度及标准差如下:

假定各种纤维的强度服从等方差的正态分布. (1)试问七种纤维强度间有无显著差异(取各种纤维的强度间有显著差异,请进一步在

; )

下进行多重比较,并指出哪种纤维的平均强度

(2)若各种纤维的强度间无显著差异,则给出平均强度的置信水平为0.95的置信区间;若最大,同时给出该种纤维平均强度的置信水平为0.95的置信区间.

【答案】(1)这是一个方差分析的问题. 由已给条件可算得

所以

因而

从而检验统计量

检验的P 值为

这说明因子是不显著的,故认为七种纤维强度间无显著差异.

(2)由于方差分析的结论是不显著的,故应将所有的数据看成来自同一个总体,从而将所有