2018年北京市培养单位资源与环境学院603高等数学(丙)之工程数学—线性代数考研仿真模拟五套题
● 摘要
一、解答题
1.
已知
其中E
是四阶单位矩阵
是四阶矩阵A 的转置矩阵
,
求矩阵A
【答案】
对
作恒等变形,
有即
由
故矩阵可逆.
则有
以下对矩阵做初等变换求逆,
所以有
2.
设当a , b 为何值时,存在矩阵C 使得AC-CA=B,并求所有矩阵C.
【答案】显然由AC-CA=B可知,若C 存在,则必须是2阶的方阵,设则AC-CA=B
可变形为
即得到线性方程组
若要使C 存在,则此线性方程组必须有解,于是对方程组的增广矩阵进行初等行变换如下,
故当a=-1,b=0时,线性方程组有解,即存在矩阵C , 使得AC-CA=B. 此时
,
所以方程组的通解为
也就是满足AC-C4=B的矩阵C 为
其中
3.
设
为任意常数.
记
证明:
为三维单位列向量,并且
(Ⅰ)齐次线性方程组Ax=0有非零解; (Ⅱ)A
相似于矩阵
则
故Ax=0有非零解.
(Ⅱ)由(Ⅰ
)知向量.
又且
另外,由
故可知
为A 的特征值
,
为对应的特征向量.
为A 的3个
故A
有零特征值
的非零解即为
对应的特征
【答案】(Ⅰ)由于A 为3阶方阵,且
为两个正交的非零向量,从而线性无关.
故
线性无关的特征向量,
记
则
为4的2重特征值
,为4的单重特征值.
即A
相似于矩阵
4. 设n 阶实对称矩阵A
满足
(Ⅰ)求二次型(Ⅱ
)证明[!
【答案】
(Ⅰ)设
由于
从而
的规范形;
且秩
的值.
即或
贝
因为A 是
是正定矩阵,
并求行列式
为矩阵A 的特征值,
对应的特征向量为
又因
故有
解得
实对称矩阵,所以必可对角化,
且秩于是
那么矩阵A 的特征值为:1(k 个),-1(n-k 个).
故二次型
(Ⅱ)因
为
故
的规范形为
所以矩阵B 的特征值是
:
由于B 的特征值全大于0且B 是对称矩阵,因此B 是正定矩阵,
且
二、计算题
5. 已知3阶矩阵A 的特征值为1, 2, 3, 求
【答案】
令
的特征值. 又
:
征值性质得
6. 用矩阵记号表示二次型:
(1
)(2
)(3
)
【答案】(1)
是
的全部特征值. 由特是
因1,2, 3是A 的特征值,
故
为3阶方阵,
于是
相关内容
相关标签