2017年河南师范大学数学与信息科学学院432统计学[专业硕士]之概率论与数理统计教程考研强化模拟题
● 摘要
一、证明题
1. 试证随机变量X 的偏度系数与峰度系数对位移和改变比例尺是不变的,
即对任意的实数
与X 有相同的偏度系数与峰度系数.
【答案】因为j
所以
即Y 与X 有相同的偏度系数. 又因为
所以Y 与X 有相同的峰度系数.
2. 设随机变量X 的密度函数p (x )关于c 点是对称的,且E (X )存在,试证:
(1)这个对称中心c 既是均值又是中位数,即(2)如果c=0,则
因此
所以得
又由
所以
(2)当c=0时,
又由
由此得结论.
由此得
【答案】(1)由p (x )关于c 点对称可知:
3. 证明:若则对有
并由此写出与
其
中
【答案】由t 变量的结构知, t 变量可表示
为
且u 与v 独立, 从而有
由于
将两者代回可知, 在
时, 若r 为奇数, 则
若r 为偶数, 则
证明完成. 进一步, 当r=l时
, 时, 4. 设证:
【答案】注意到
故
证明完成.
为一个样本,
是样本方差, 试
(此时要求
(此时要
求否则方差不存在).
否则均值不存在), 当r=2
5. 设A ,B ,C 为三个事件,且P (A )=a,P (B )=2a,P (C )=3a,P (AB )=P(AC )=P(BC )=b.证明
:
【答案】由又因为所以得
得
进一步由
6. 设X 为仅取正整数的随机变量,若其方差存在,证明:
【答案】由于其中
代回原式即得证.
7. 设连续随机变量
独立同分布, 试证:
【答案】设诸而事件
从而该事件的概率为
若记诸
的分布函数为
则上式积分可化为
8. 设总体μ,则
即
将(*)式两端对H 求导,并注意到
有
这说明为证明
即
于是
从而
的UMVUE.
的UMVUE. 【答案】大家知道:
分别是
的无偏估计,设
是0的任一无偏估计,
为样本,证明,
分别为
的密度函数为P (x ), 其联合密度函数为
.
存在,所以级数
绝对收敛,从而有
的UMVUE ,我们将(**)式的两端再对求导,得