2017年中国地质大学(北京)地球物理与信息技术学院610高等数学考研冲刺密押题
● 摘要
一、选择题
1. 设{
A. 若B. 若C. 若
}为正项数列,下列选项正确的是( ).
,则收敛,则
收敛
存在 收敛
收敛,则存在常数p >1,使
存在,则
D. 若存在常数p >1,使【答案】D
【解析】对于A 项,缺少一条件,显然错误. 又莱布尼茨条件只是交错级数收敛的
,由相应判别法知级数
,不存在.D 项,若存在常数p >1,
使
,即
,由正项级数的比较判别法知
收
B 项错误.C 项错误,充分条件,不是必要条件,例如,设收敛,但是对于任何常数p >1,极限
存在,则当n 充分大时有
敛.
2. 直线L 为
A.L 平行于π B.L 在π上 C.L 垂直于π D.L 与π斜交 【答案】C
【解析】求出直线L 的方向向量为
平面π为
则( )。
平面Ⅱ的法向量n=4i-2j+k, 故s ∥n , 即直线L 垂直于平面Ⅱ。 3. 已知则必有( )。
A.a , b , c 两两互相平行 B.a , b , c 两两互相垂直 C.a , b , c 中至少有一个为零向量 D.a , b , c 共面 【答案】D 【解析】由
则(a ×b )·c=0故a , b , c 共面。
4. 已知直线L 1:x+1=y-1=z与直线L 2:
A.0 B.1 C. D.
相交于一点,则λ等于( )。
知(a ×b )·c+(b ×c )·c+(c ×a )·c=0又(b ×c )·c+(c ×a )·c=0,
【答案】D
,直线L 2:【解析】直线L 1:x+1=y-1=z的方向向量为s 1=(1, 1, 1)
的
,方向向量为s 2=(1, 2, λ)显然s 1与s 2不平行,则L 1与L 2相交于一点的充要条件是L 1与L 2共面,即
由此得
5. 方程
【答案】C
【解析】由于选项中有三项均为坐标轴,则可先考虑旋转轴是否为坐标轴,
又在曲面方程
中,
6. 设矩阵
是满秩的,则直线是( )。
表示旋转曲面,它的旋转轴是( )。
系数相等,则旋转轴应是z 轴(若三项系数均不相等,则应选D )。
与直线
A. 相交与一点 B. 重合 C. 平行但不重合 D. 异面直线 【答案】A
【解析】本题结合了线性代数中矩阵与行列式的简单应用。 由题意,不妨设三点为则M 1是直线M 3是直线且有
故 7. 极限
A. 不存在 B. 等于1 C. 等于0 D. 等于2 【答案】C 【解析】由于(当
时)令
则
则故
与两直线方向向量共面,即两已知直线共面,但不平行。
( )。
上的点, 上的点, 又
8. 设a 、b 为非零向量,且a ⊥b , 则必有( )。
【答案】C
【解析】由向量与平面几何图形之间的关系可知,a ⊥b 时, 以a , b 为边得四边形为矩形,
且与
均是该矩形的对角线长,则必有