2016年华南理工大学材料科学与工程学院数字信号处理复试笔试仿真模拟题
● 摘要
一、综合题
1. 分别用巴特沃思、切比雪夫逼近设计一个带通滤波器满足下面的条件:
所以第一步是确定几何对称的带通滤波器,这样得到:
将已知条件中的带通技术要求转化为相应的归一化低通技术要求,有:
(1)巴特沃思逼近:
根据上面的技术要求,可以由波器阶数。计算得:
当
时,计算出归一化巴特沃思多项式的零点:
【答案】因为
求得有了可以由确定最小的滤
因此,低通滤波器的归一化传输函数
为:
把归一化低通滤波器变成所要求的带通滤波器的传输函数
(2)切比雪夫逼近:
根据上前面的技术要求,分别用
和
得
把归一化低通滤波器变换成带通滤波器,相应的带通滤波器的传输函数为:
2. 画出图1中系统的转置结构,并验证两者具有相同的系统函数。
【答案】按照图1, 将支路方向翻转,维持支路增益不变,并交换输入输出的位置,则形成对应的转置结构, 画出图1系统的转置结构如图2所示。将图2和图1对照,它们的直通通路和反馈回路情况完全一 样,写出它们的系统函数完全一样,这里用Masson 公式最能说明问题。
的分母多项式,然后获得低通滤波器的归一化传输函数
计算和的值,得到:
图1
图2
3. 有一离散系统如如下图所示,若
求,
图
【答案】由变换定义直接计算得:
故得:
令:
对比两式可解出:所以有: