2017年重庆大学数学与统计学院820高等代数考研仿真模拟题
● 摘要
一、选择题
1. 设A 为4×3矩阵,常数,则
是非齐次线性方程组
的3个线性无关的解,
为任意
的通解为( )
【答案】C 【解析】由
于又显然有基础解系.
考虑到 2. 设
又
则( )•
【答案】(C ) 【解析】令将①代入④得
即
3. 设A 为3阶矩阵,将A 的第2行加到第1行得8, 再将B 的第1列的一1倍加到第2列得C ,
由②有
为空间的两组基,且
是
的一个特解,所以选C.
(否则与
是非齐次线性方程
组,所以有解矛盾)
的三个线性无关的解,所
以从而
是
的一个
是对应齐次线性方程组
的两个线性无关的解.
记
A.
则( ).
B. C. D.
【答案】B
【解析】由已知,有
于是
4. 设
A. 合同且相似 B. 合同但不相似 C. 不合同但相似 D. 不合同不相似 【答案】A
则A 与B ( ).
【解析】因为A ,B 都是实对称阵,且B 有4个特征值
又因为即A 也有4个特征值0,0,0,4. 因而存在正交阵
其中
故A 〜B. 再由
是正交阵,知T 也是正交阵,从而有
使
且由①式得
因此A 与B 合同.
5. 设A 、B 为满足AB=0的任意两个非零矩阵. 则必有( ).
A.A 的列向量组线性相关,B 的行向量组线性相关 B.A 的列向量组线性相关,B 的列向量组线性相关 C.A 的行向量组线性相关,B 的行向量组线性相关 D.A 的列向量组线性相关,B 的列向量组线性相关 【答案】A
【解析】方法1:设由于
又由方法2:设考虑到
不妨设线性相关.
并记A 各列依次为
由于AB=0可推得AB
的第一列
从而
由已知及以上证明知B ’的列线性相关,即B 的行向量组线性相关.
由于AB=0, 所以有
即r (A )>0, r (B )>0, 所以有
R (A ) 故A 的列向量组及B 的行向量组均线性相关. 二、分析计算题 6. 设f ,g 为两个不全为零的多项式. 证明: 【代x 亦有故②设故反之,设 7. 计算行列式 则由(1)中第二式可得第一式,从而可知: 则存在 使 答 于是存在多项式 使 案 】 【答案】将第i 列乘以加到第一列,得