2018年宁夏大学物理电气信息学院602高等数学之工程数学—线性代数考研强化五套模拟题
● 摘要
一、解答题
1.
已知
的秩为
2.
二次型
求实数a 的值;
求正交变换x=Qy使得f 化为标准型. 【答案】
⑴由
可得
,
则矩阵
解得B 矩阵的特征值为
:当
时,
解
得对应的特征向量为
当时,
解
得对应的特征向量为
对于
解得对应的特征向量为
:
将单位转化为
:
. 令X=Qy,
则
2.
已知矩阵可逆矩阵P ,使
和
若不相似则说明理由。
试判断矩阵A 和B 是否相似,若相似则求出
【答案】由矩阵A 的特征多项式
得到矩阵A
的特征值是当
时,由秩
知
有2个线性无关的解,即
时矩阵A 有2个线性无关的特征向量,矩阵
A 可以相似对角化,因此矩阵A 和B 不相似。
3. 已知实二次
型
的矩阵A ,满
足
且
其
中
(Ⅰ)用正交变换xzPy 化二次型为标准形,并写出所用正交变换及所得标准形; (Ⅱ
)求出二次型【答案】(Ⅰ)
由由
知,B
的每一列
满足
的具体表达式.
知矩阵A
有特征值即
是属于A 的特征值
.
则
与—
j 正交,于是有
令
的线性无关特征向
显然B 的第1, 2列线性无关
,量,从而知A
有二重特征值
设
对应的特征向量为
解得
将
正交化得:
再将正交向量组
单位化得正交单位向量组:
令
(Ⅱ
)由于
则由正交变换
故
化二次型为标准形
故二次型
4. 设B
是
(I
)证明(II
)证明(III
)若【答案】⑴
(II )
矩阵
且A 可对角化,
求行列式逆
其中E 是n 阶单位矩阵.
相关内容
相关标签