当前位置:问答库>考研试题

2018年宁夏大学物理电气信息学院602高等数学之工程数学—线性代数考研核心题库

  摘要

一、解答题

1.

(1)计算行列式∣A ∣;

(2)当实数a 为何值时,

线性方程组【答案】

有无穷多解?并求其通解.

若要使得原线性方程组有无穷多解,

则有及得

此时,

原线性方程组增广矩阵为

进一步化为行最简形得

可知导出组的基础解系为

非齐次方程的特解为

故其通解为k 为任意常

数.

2.

已知

其中E

是四阶单位矩阵是四阶矩阵A 的转置矩阵

求矩阵A

【答案】

作恒等变形,

有即

故矩阵可逆.

则有

以下对矩阵做初等变换求逆,

所以有

3. 已知A 是3阶矩阵,

(Ⅰ)证明

:(Ⅱ

)设

是3维非零列向量,若线性无关;

【答案】

(Ⅰ)由同特征值的特征向量,

又令即由

线性无关,得齐次线性方程组

线性无关.

且非零可知,是A 的个

因为系数行列式为范德蒙行列式且其值不为0,

所以必有

线性无关;

(Ⅱ)因为

,

所以

故 4.

当a , b 为何值时,存在矩阵C 使得AC-CA=B,并求所有矩阵C.

【答案】显然由AC-CA=B可知,若C 存在,则必须是2阶的方阵,设则AC-CA=B

可变形为

即得到线性方程组

若要使C 存在,则此线性方程组必须有解,于是对方程组的增广矩阵进行初等行变换如下,

故当a=-1,b=0时,线性方程组有解,即存在矩阵C , 使得AC-CA=B.