2018年宁夏大学物理电气信息学院602高等数学之工程数学—线性代数考研仿真模拟五套题
● 摘要
一、解答题
1.
已知
且
.
求
又
又
知
即
2.
已知方程组量依次是
(Ⅰ)求矩阵 (Ⅱ
)求【答案】
当a=-1及a=0时,方程组均有无穷多解。 当a=-l时,
则当g=0时,
则值的特征向量.
由
知
线性相关,不合题意. 线性无关,可作为三个不同特征
的基础解系.
有无穷多解,矩阵A 的特征值是1, -1, 0, 对应的特征向
得
故
知
故
【答案】
由题意知
(Ⅱ
)
知
的基础解系,
即为
的特征向量
3. 证明n
阶矩阵
与相似.
【答案】
设 分别求两个矩阵的特征值和特征向量为,
故A 的n 个特征值为
且A 是实对称矩阵,则其一定可以对角化,且
所以B 的n
个特征值也为
=-B的秩显然为1,故矩阵B 对应n-1
重特征值
对于n-1
重特征值由于矩阵(0E-B )
的特征向量应该有n-1个线性无关,进一步
矩阵B 存在n 个线性无关的特征向量,即矩阵B 一定可以对角化,且从而可
知n
阶矩阵
与相似.
4. 已知A 是3阶矩阵,
(Ⅰ)证明
:(Ⅱ
)设
【答案】
(Ⅰ)由同特征值的特征向量,
故
又令即由
求
是3维非零列向量,若线性无关;
且
线性无关.
令
非零可知,是A 的个
线性无关,得齐次线性方程组
因为系数行列式为范德蒙行列式且其值不为0,
所以必有
线性无关;
(Ⅱ)因为
,
所以
即
故
二、计算题
5. 举反例说明下列命题是错误的:
(1
)若
(2
)若
则
则有
有
但
,但且
但
则A=(9或A=五;
(3)若AX=AY ,
且
【答案】
⑴取
⑵取
(3)取有AX=AF,
且