2018年湖南大学金融与统计学院396经济类联考综合能力[专业硕士]之概率论与数理统计考研强化五套模拟题
● 摘要
一、计算题
1. 通常每平方米某种布上的疵点数服从泊松分布,现观测该种布
【答案】以X 记每平方米上的疵点数,则可认为
发现有126个疵点,在
显著性水平为0.05下能否认为该种布每平方分米上平均疵点数不超过1个?并给出检验的p 值.
,需要检验的假设为
,
由于n=100, 故可以采用大样本检验,泊松分布的均值和方差都是,而因而,检验的统计量为若取由于u 在
. 则
,检验的拒绝域为
.
. 这里u=2.6落入拒绝域,故
.
拒绝原假设,认为该种布每平方米上的平均疵点数不超过1个的结论不成立.
成立时,服从标准正态分布,因而检验的p 值为
2. 某人想用10000元投资于某股票,该股票当前的价格是2元/股. 假设一年后该股票等可能的为1元/股和4元/股. 而理财顾问给他的建议是:若期望一年后所拥有的股票市值达到最大,则现在就购买;若期望一年后所拥有的股票数量达到最大,则一年以后购买. 试问理财顾问的建议是否正确? 为什么?
【答案】如果现在就购买2元/股,则10000元可购买5000股. 记X 为一年后所拥右的股票市值X 的分布列为
表
1
所以E (X )=12500元,比一年后购买(市值为10000元)大.
如果一年后购买,记Y 为一年后所购股票数,则10000元等可能地购买10000/1=10000股或10000/4=2500股,所以Y 的分布列为
表
2
由此得E (Y )=5000+1250=6250(股),比现在就购买(5000股)多. 因此,理财顾问的建议是正确的.
3. 设一个质点落在xOy 平面上由x 轴、y 轴及直线x+y=l所围成的三角形内,而落在这三角形内各点处的可能性相等,即落在这三角形内任何区域上的概率与这区域的面积成正比,试求此质点还满足y<2x的概率是多少?
【答案】由题设知这个概率可由几何方法确定,
为此将样本空间y <2x ”用图表出,图中阴影部分为事件A ,由图知
.
和A 的度量分别为:
和事件A “此质点满足
,
由此得
图
4. 设二维随机变量成的三角形区域.
(1)求X 的概率密度(2)求条件概率密度【答案】 (1)
;
.
的概率密度为
X 的概率密度为
①当②当③当综上所述
(2)Y 的概率密度为
在
时, X 的条件概率密度为
服从区域G 上的均匀分布, 其中G 是由与所围
或
时, 时,
时,
5. 已知离散随机变量X 的分布列为
表
1
试求【答案】
与
的分布列. 的分布列为
表
2
的分布列为
表
3
6. 一辆重型货车去边远山区送货. 修理工告诉司机,由于车上六个轮胎都是旧的,前面两个轮胎损坏的概率都是0.1,后面四个轮胎损坏的概率都是0.2, 你能告诉司机,此车在途中因轮胎损坏而发生故障的概率是多少吗?
【答案】此车在途中因轮胎损坏而发生故障意味着车上的六个轮胎至少有一个发生故障, 为此记事件为“第i 个轮胎发生故障”,其中i=l,2, 表示前面两个轮胎,i=3, 4, 5, 6表示后面四个轮胎,
则
.
又假设车上的六个轮胎工作是独立的,则所求概率为
7. 假设一设备开机后无故障工作的时间X 服从指数分布, 平均无故障工作的时间开机无故障工作的时间X 的分布函数
为5小
时. 设备定时开机, 出现故障时自动关机, 而在无故障的情况下工作2小时便关机. 试求该设备每次
【答案】根据题意确定随机变量y 的表达式设X 服从参数为的指数分布, 根据题意得到