2017年大连海洋大学水产715高等数学Ⅱ之概率论与数理统计考研仿真模拟题
● 摘要
一、证明题
1. 设
则
为独立的随机变量序列, 证明:若诸服从大数定律.
的方差一致有界, 即存在常数c 使得
【答案】因为
所以由马尔可夫大数定律知
服从大数定律.
2. 设连续随机变量X 的密度函数为p (X ), 试证:p (x )关于原点对称的充要条件是它的特征函数是实的偶函数.
【答案】记X 的特征函数为为
这表明X 与-X 有相同的特征函数,
从而X 与-X 有相同的密度函数, 而-X 的密度函数为关于原点是对称的.
再证必要性, 若
, 则X 与-X 有相同的密度函数, 所以X 与-X 有相同的特征函数,
由于-X 的特征函数为所以故是实的偶函数.
3. 设都是分布函数,a 和b 是两个正常数,且a+b=l.证明:也是一个分布函数.
【答案】为此要验证F (x )具有分布函数的三个基本性质. (1)单调性. 因为于是
(2)有界性. 对任意的x ,有
且
(3)右连续性.
4. [1]设随机变量X 仅在区间[a,b]上取值,试证:
[2]设随机变量X 取
值
的概率分别
是
第 2 页,共 50 页
先证充分性. 若是实的偶函数, 则又因
所以得, 即
都是分布函数,故当
时,有
证明:
【答案】[1]仅对连续随机变量X 加以证明. 记p (x )为X 的密度函数,因为
同理可证,
由上题的结论知
[2]仿题[1]有
5. 任意两事件之并
可表示为两个互不相容事件之并,譬如
【答案】⑴
(2)利用加法公式可得
6. 证明:对正态分布
若只有一个观测值,则
的最大似然估计不存在.
(1)试用类似方法表示三个事件之并(2)利用(1)的结果证明
【答案】在只有一个观测值场合,对数似然函数为
该函数在
时趋于
这说明该函数没有最大值,或者说极大值无法实现,
从而
的最大
似然估计不存在.
7. 设是来自几何分布
的样本, 证明
是充分统计量.
其分布列为
在给定T=t后, 对任意的一个样本
, 有
【答案】由几何分布性质知,
第 3 页,共 50 页
该条件分布与无关, 因而
是充分统计量.
这个条件分布是离散均匀分布, 可用等可能模型给其一个解释:设想有n —1个“1”和t 个“0”, 把它们随机地排成一行, 并在最后位置上添上1个“1”, 譬如
这n 个“1”把此序列分成n 段, 每段中“0”
的个数依次记为且
我们指出, 此种序列共有
, 这就是在
这里诸服从几何分布,
, 而每一个出现是等可能的, 个(这是重复组合)
给定后
的条件联合分布.
即每一个出现的概率都是
这个条件分布还表明:
当已知统计量(
统计量的真实含义.
8. 在回归分析计算中,常对数据进行变换:
的值t 后, 就可按此条件分布产生一个样本
), 它虽与原样本不尽相同, 但其分布相同. 在功能上这等价于恢复了原样本. 这就是充分
其中
平方和之间的关系;
(2)证明:由原始数据和变换后数据得到的F 检验统计量的值保持不变. 【答案】(1)经变换后,各平方和的表达式如下:
所以由原始数据和变换后数据得到的最小二乘估计间的关系为
是适当选取的常数.
(1)试建立由原始数据和变换后数据得到的最小二乘估计、总平方和、回归平方和以及残差
第 4 页,共 50 页
相关内容
相关标签