2018年郑州大学联合培养单位洛阳师范学院312心理学专业基础综合之现代心理与教育统计学考研强化五套模拟题
● 摘要
一、概念题
1. 概率
【答案】概率(probability ),概率论术语指,随机事件发生可能性大小度量指标。①概率描述性定义。随机事件A 在所有试验中发生可能性大小的量值,称为事件A 的概率,记为P (A )。如将一枚均匀硬币上抛足够多次,会发现“正面朝上”的事件出现的频率在0.5上下波动。这种频率稳定性从实践上表明随机事件的概率是客观存在的。②概率的精确定义。设P 是定义在“事件域”上的一个集合函数,若满足下列条件,则称之为概率:
a.P
两互不相容对一
切,则
(性质(ⅲ)称为完全可加性)。若P 是概率,则不可能事件的概率为零,即对任意事件有应当注意,若P (A )=0, 并不能说A —定是不可能事件,即不可能事件的概率一定是零,但概率为零的事件未必是不可能事件。这是由于P 是集合函数,可能在某些点集上(如有限个点)为零。同理,概率为1的事件,未必是必然事件。
2. 随机原则
【答案】随机原则指在进行抽样时,总体中每一个个体是否被抽取,并不由研究者主观决定,而是每一个体按照概率原理被抽取的可能性是相等的。由于随机抽样使每个个体有同等机会被抽取,因而有相当大的可能性使样本保持和总体有相同的结构,或者说,具有最大的可能使总体的某些特征在样本中得以表现。这时可以说随机样本可以保证样本代表总体。
3. 假设检验
【答案】在统计学中,通过样本统计量得出的差异作出一般性结论,判断总体参数之间是否存在差异,这种推论过程称假设检验。假设检验是推论统计中最重要的内容,它的基本任务就是事先对总体参数或总体分布形态做出一个假设,然后利用样本信息来判断原假设是否合理,从而决定是否接受原假设。检验的推理逻辑是一定概率保证下的反证法。一般包括四个步骤:(1)根
据问题要求提出原假设 (2)寻找检验统计量,用于提取样本中的用于推断的信息,要求在Ho 成立的条件下,统计量的分布已知且不包含任何未知参数;(3)由统计量的分布,计算“概率值”或确定拒绝域与接受域;(4)由具体样本值计算统计量的观测值,对统计假设作出判断。若Ho 的内容涉及到总体参数,称为参数假设检验,否则为非参数检验。
4. 抽样分布
【答案】抽样分布又称取样分布指某种统计量的概率分布,它是根据样本的所有可能的样本观察值计算出来的某个统计量的观察值的分布。抽样分布指样本统计量的分布,它是统计推论的重要依据。在科学研宄中,一般是通过一个样本进行分析,只有知道了样本统计量的分布规律,才能依据样本对总体进行推论,也才能确定推论正确或错误的概率是多少。常用的样本分布有平均数及方差的分布。
二、简答题
5. 正态分布的特征是什么,统计检验中为什么经常要将正态分布转化成标准正态分布?
【答案】正态分布也称常态分布或常态分配。是连续随机变量概率分布的一种。描述正态分布曲线的一般方程为:
式中:是圆周率3.1415…
是自然对数的底2.71828…
为随机变量取值为理论平均数
为理论方差
为概率密度,即正态分布的纵坐标。
(1)正态分布的特征
①正态分布的形式是对称的,它的对称轴是经过平均数点的垂线,正态分布中,平均数、中数、众数三者相等,此点y 值最大(0.3989)。左右不同间距的y 值不同,各相当间距的面积相等,y 值也相等。
②正态分布的中央点(即平均数点)最高,然后逐渐向两侧下降,曲线的形式是先向内弯,然后向外弯,拐点位于正负1个标准差处,曲线两端向靠近基线处无限延伸,但终不能与基线相交。
③正态曲线下的面积为1, 由于它在平均数处左右对称,故过平均数点的垂线将正态曲线下的面积划分为相等的两部分,即各为0.50。正态曲线下各对应的横坐标(即标准差)处与平均数之间的面积可用积分公式计算。因正态曲线下每一横坐标所对应的面积与总面积(总面积为1)之比其值等于该部分面积值,故正态曲线下的面积可视为概率,即值为每一横坐标值(x 加减一定标准差)的随机变量出现的概率。
④正态分布是一族分布。它随机变量的平均数、标准差的大小与单位不同而有不同的分布形态。如果平均数相同,标准差不同,这时标准差大的正态分布曲线形式低阔;如果标准差小,则正态曲线的形式高狭。
⑤正态分布下,标准差与概率有一定数量关系。
(2)统计检验中经常将正态分布转化为标准正态分布是因为标准正态分布的Z 分数不仅能表明原始分数在分布中的地位,而且能在不同分布的各个原始分数之间进行比较,同时,还能用代数方法处理,因此,它被教育统计学家称为“多学科表示量数”,有着广泛的用途。
①用于比较几个分属性质不同的观测值在各自数据分布中相对位置的高低。
Z 分数可以表明各个原始数据在该组数据分布中的相对位置,它无实际单位,可对不同的观测值进行比较。这里所说的数据分布中相对位置包括两个意思,一个是表示某原始数据以平均数为中心以标准差为单位所处距离的远近与方向;另一个意思是表示某原始数据在该组数据分布中的位置, 即在该数据以下或以上的数据各有多少。如果在一个正态分布(或至少是一个对称分布)中,这两个意思可合二为一。但在一个偏态分布中,这两个意思就不能统一。
在实际的教育与心理研究中,经常会遇到属于几种不同质的观测值,此时,不能对它们进行直接比较,但若知道各自数据分布的平均数与标准差,就可分别求出Z 分数进行比较。
一个原始分数被转换为Z 分数后,就可知道它在平均数以上或以下几个标准差的位置,从而知道它在分布中的相对地位。当原始分数的分布是正态分布时,只要求出分布中某一原始分数的Z 分数,就可以通过查正态分布表得知此原始分数的百分等级,从而知道在它之下的分数个数占全部分数个数的百分之几,进一步明确此分数的相对地位。
②计算不同质的观测值的总和或平均值,以表示在团体中的相对位置。
不同质的原始观测值因不等距,也没有一致的参照点,因此不能简单地相加或相减。计算平均数时要求数据必须同质,否则会使平均数没有意义。但是,当研究要求合成不同质的数据时,如果已知这些不同质的观测值的次数分布为正态,这时可采用Z 分数来计算不同质的观测值的总和或平均值。
③表示标准测验分数。
经过标准化的教育和心理测验,如果其常模分数分布接近其正态分布,为了克服标准分数出现的小数、负数和不易为人们所接受等缺点,常常是将其转换成正态标准分数。转换公式为:
式中:
为经过转换后的标准正态分数
A 、B 为常数
指转换前的标准分数,a 为测验常模的标准差。
标准分数经过这样的线性转换后,仍然保持着原始分数的分布形态,同时仍具有原来标准分数的一切优点。例如,早期的智力测验中是运用比率智商(IQ )作为智力测查的指标。