2017年上海师范大学数理学院432统计学[专业硕士]之概率论与数理统计教程考研强化模拟题
● 摘要
一、证明题
1. 设
为自由度为n 的t 变量, 试证:
的极限分布为标准正态分布N (0, 1).
, 其中
, 且X 与Y
, 考察其极限知
由特征函数性质知
从而由
, 再按依概率收敛性知
这就证明了
2. 设时,
的极限分布为标准正态分布N (0, 1).
试证明:当n 充分大
【答案】据自由度为n 的t 变量的构造知相互独立. 由Y 的特征函数为
, 劼的特征函数为
为一独立同分布的随机变量序列, 已知
近似服从正态分布, 并指出此正态分布的参数.
【答案】因为为独立同分布的随机变量序列, 所以也是独立同分布的随机变量序列.
根据林德伯格-莱维中心极限定理知, 近似服从正态分布, 其参数为
3. 设连续随机变量
独立同分布, 试证:
【答案】设诸而事件
的密度函数为P (x ), 其联合密度函数为.
从而该事件的概率为
若记诸
的分布函数为
则上式积分可化为
4. 设总体为如下离散型分布
表
是来自该总体的样本.
(1)证明次序统计量((2)以必有
于是, 对任一组并
满足
中有个
有
表示
【答案】(1)给定(
)是充分统计量;
中等于的个数, 证明(
)的取值
设
)是充分统计量.
中有个
可以为0, 但
该条件分布不依赖于未知参数, 因而次序统计量((2)因为给出(这只要通过令即可实现(这里默认因此,
是充分统计量. 1与
,
),
是一一对应的,
)就可算得(
, 反之, 给出)
,
,
也可构造出(
, )
)是充分统计量.
5. 已知某商场一天来的顾客数X 服从参数为的泊松分布,而每个来到商场的顾客购物的概率为p ,证明:此商场一天内购物的顾客数服从参数为
的泊松分布.
【答案】用Y 表示商场一天内购物的顾客数,则由全概率公式知,对任意正整数k 有
这表明:Y 服从参数为
的泊松分布.
6. 验证:正态总体方差(均值已知)的共轭先验分布是倒伽玛分布.
【答案】设总体玛分布
,其密度函数为
,其中已知,为其样本,取的先验分布为倒伽
则的后验分布为
即
值已知)的共轭先验分布.
7. 设是来自两参数指数分布
的样本, 证明(
)是充分统计量.
这就证明了倒伽玛分布是正态总体方差(均
【答案】由已知, 样本联合密度函数为
令
8. 设
服从多项分布
, 由因子分解定理,
其概率函数为:
其中即
其中
,i=l, ……k ,
.
记
并把这一分布记作
. 证明:的后验
为参数,
若
的先验分布为Dirichlet 分布,是
的充分统计量•
分布为Dirichlet 分布
【答案】因为的后验概率函数为