当前位置:问答库>考研试题

2017年上海师范大学数理学院432统计学[专业硕士]之概率论与数理统计考研导师圈点必考题汇编

  摘要

一、证明题

1. 设X 为非负连续随机变量,若

(1)(2)

存在,试证明:

【答案】(1)因为X 为非负连续随机变量,所以当x<0时,有F (x )=0.利

(2)因为X 为非负连续随机变量,所以

也是非负连续随机变量,因此利用(1)可得

2. 设

为来自如下幂级数分布的样本,总体分布密度为

(1)证明:若c 已知,则的共轭先验分布为帕雷托分布; (2)若已知,则c 的共轭先验分布为伽玛分布. 【答案】(1)当c 已知时,不妨设服从帕雷托分布,即都已知,常记为

则在给出样本

后的后验分布密度函数为

其中

其中验分布.

(2

)当已知时,不妨设c

服从伽玛分布

第 2 页,共 45 页

因此,所以当c 已知时帕雷托分布为的共扼先

其中

都已知. 则给出样本后c 的后验分布密度函数

这说明

3. 设P (A )>0,试证:

【答案】因为

所以

4. 设罐中有b 个黑球、r 个红球,每次随机取出一个球,取出后将原球放回,再加入同色的球. 试证:第k 次取到黑球的概率为

【答案】

设事件设

则显然有

则由全概率公式得

把k 次取球分为两段:第1次取球与后k-1次取球. 当第1次取到黑球时,罐中增加c 个黑球,这时从原罐中第k 次取到黑球等价于从新罐(含b+c个黑球,r 个红球)中第k-1次取到黑球,故有

类似有

所以代入(1)式得

由归纳法知结论成立.

5. 设二维随机向量(X , Y )服从二维正态分布, 且

第 3 页,共 45 页

证明完成.

下用归纳法证明.

为“罐中有b 个黑球、r 个红球时,第i 次取到是黑球”,

证明:对任意正常数a , b 有

【答案】记

由条件知p<0, 所以

由此得

所以

其中

又由

这就完成不等式的证明.

6. 设

为独立的随机变量序列, 证明:若诸服从大数定律.

的方差一致有界, 即存在常数c 使得

【答案】因为

所以由马尔可夫大数定律知

7. 设

,试证

服从大数定律.

【答案】因为X 的密度函数为

又因为Y=In X 的可能取值范围为单调增函数,其反函数为

是区间

上的严格

所以Y 的密度函数为

第 4 页,共 45 页