当前位置:问答库>考研试题

2017年湖南科技大学管理学院630统计学考研仿真模拟题

  摘要

一、简答题

1. 简述季节指数的计算步骤。

【答案】以移动平均趋势剔除法为例,计算季节指数的基本步骤为:

,(1)计算移动平均值(如果是季度数据采用4项移动平均,月份数据则采用12项移动平均)

并将其结果进行“中心化”处理,也就是将移动平均的结果再进行一次2项的移动平均,即得出“中心化移动平均值”

(2)计算移动平均的比值,也称为季节比率,即将序列的各观察值除以相应的中心化移动平均值,然后再计算出各比值的季度(或月份)平均值。

(3)季节指数调整。由于各季节指数的平均数应等于1或100%,若根据第2步计算的季节比率的平均值不等于1时,则需要进行调整。具体方法是:将第(2)步计算的每个季节比率的平均值除以它们的总平均值。

2. 什么叫变异、变量和变量值,试举例说明。

【答案】标志在同一总体不同总体单位之间的差别称为变异。例如:人的性别标志表现为男、女;年龄标志表现为20岁、30岁等。

变异标志又称为变量,是说明现象某种特征的概念,其特点是从一次观察到下一次观察结果会呈现出差别或 变化。变量的具体取值称为变量值。具体包括:

(1)分类变量,如“性别”就是分类变量,其变量值为“男”或“女”;

“二等品”、“三等品”、(2)顺序变量,如“产品等级”就是顺序变量,其变量值可以为“一等品”、

“次品”等;

(3)数值型变量,如“年龄”是连续数值型变量,变量值为非负数;“企业数”是离散数值型变量,变量 值为 1,2,……

3. 在假设检验中,犯两类错误之间存在什么样的数理关系?是否有什么办法使得两类错误同时减少?

【答案】第一类错误是指原假设为真,拒绝原假设,又称弃真错误,犯这类错误的概率记为第二类错误是指原假设为假,接受原假设,又称取伪错误,犯这类错误的概率记为

由于两类错误是矛盾的,在其他条件不变的情况下,减少犯弃真错误的可能性

犯取伪错误的可能性

一办法只有增大样本容量,这样既能保证满足取得较小的又能取得较小的值。

4. 说明回归模型的假设以及当这些假设不成立时的应对方法。

【答案】(1)多元回归模型的基本假定有:

第 2 页,共 55 页 势必增大

也就是说,

的大小和显著性水平的大小成相反方向变化。解决的唯

①自变量

③对于自变

; 是非随机的、固定的,且相互之间互不相关(无多重共线性) 的方

差都相同,且不序列相关,

的所有

值②误差项s 是一个期望值为0的随机变量,即

④误差项是一个服从正态分布的随机变量,且相互独立,即

(2)若模型中存在多重共线性时,解决的方法有:

第一,将一个或多个相关的自变量从模型中剔除,使保留的自变量尽可能不相关。

第二,如果要在模型中保留所有的自变量,那就应该:避免根据统计量对单个参数进行检验;对因变量Y 值的推断(估计或预测)限定在自变量样本值的范围内。

若模型中存在序列相关时,解决的方法有:如果误差项不是相互独立的,则说明回归模型存在序列相关性

,这时首先要查明序列相关产生的原因。如果是回归模型选用不当,则应改用适当的回归模型;如果是缺少重要的自变量,则应増加自变量;如果以上两种方法都不能消除序列相关性,则需采用迭代法、差分法等方法处理。

若模型中存在异方差性时,解决的方法有:当存在异方差性时,普通最小二乘估计不再具有最小方差线性估计的性质,而加权最小二乘估计则可以改进估计的性质。加权最小二乘估计对误差项方差小的项加一个大的权数,对误差项方差大的项加一个小的权数,因此加强了小方差性的地位,使离差平方和中各项的作用相同。

5. 简述相关系数和函数关系的差别。

【答案】变量之间的关系可分为两种类型:函数关系和相关关系。

(1)函数关系 设有两个变量

(2)相关关系

相关关系是指变量之间确实存在的但关系值不固定的相互依存关系。在这种关系中,当一个(或几个)变量的值确定以后,另一个变量的值虽与它(或它们)有关,但却不能完全确定。这是一种非确定的关系。

6. 何谓统计分组?统计分组有哪些作用?

【答案】根据统计研宄的目的和客观现象的内在特点,按某个标志(或几个标志)把被研宄的总体划分为若干个不同性质的组,称为统计分组。

统计分组的作用有:(1)发现社会经济现象的特点与规律;(2)将复杂的社会经济现象划分为性质不同的各种类型;(3)反映总体内部结构;(4)揭示现象之间的依存关系。

第 3 页,共 55 页 变量随变量一起变化,并完全依赖于当变量取某个数值时,依确定的关系取相应的值,则称是的函数。由此可见函数关系是一种一一对应的确定性关系。

7. 单因素方差分析的实质是什么?并说明单因素方差分析的步骤。

【答案】单因素方差分析的实质是研宄一个分类型自变量对一个数值型因变量的影响。 单因素方差分析的步骤为:

(1)按要求检验的个水平的均值是否相等,提出原假设和备择假设。

(2)构造检验统计量,计算各样本均值(3)计算样本统计量

(4)统计决策。比较统计量拒绝原假设。

8. 构造下列维数的列联表,并给出 的值。若拒绝原假设;反之,不能样本总均值误差平方和 检验的自由度。

a.2行5列 b.4行6列 c.3行4列

【答案】i 行j 列联表,如表所示。

a. 当

b.

c.

当,所以 检验的自由度=(行数_1)(列数一 1)时,表9-8即为2行5列的列联表,其时,表9-8即为4行6列的列联表,其时,表9-8即为3行4列的列联表,其检验的自由度=检验的自由度=检验的自由度=

9. 统计数据质量的基本标准是什么?

【答案】(1)准确:用数字语言来反映客观实际;(2)快速:统计信息服务必须具有时效性和紧迫性;(3)完整:调查单位没有遗漏,调查项目没有缺陷,资料数据齐全;(4)精练:统计信息具有针对性、有效性、精确性。

10.何谓统计量?分布、t 分布、F 分布是不是统计量?它们在统计分析中各有何用处?

【答案】设

函数

又称出是从总体X 中抽取的容量为n 的一个样本,如果由此样本构造一个不依赖于任何未知参数,则称函数为样本统计量。当获得样本的一组具体观测值的数值,就获得一个具体的统计量值。

从以上统计量的定义可以看出,当.

赖于任何未知参数时,则.

未知参数,则它们就不是统计量。

第 4 页,共 55 页 是一个统计量。通常,时,代入T ,计算分布、t 分布、F 分布是由样本构造的函数,而且不依分布、t 分布、F 分布中含有分布、t 分布、F 分布就是统计量;若