当前位置:问答库>考研试题

2017年汕头大学概率论(同等学力加试)复试实战预测五套卷

  摘要

一、计算题

1. 经验表明:预定餐厅座位而不来就餐的顾客比例为20%.如今餐厅有50个座位,但预定给了52位顾客,问到时顾客来到餐厅而没有座位的概率是多少?

【答案】记X 为预定的52位顾客中不来就餐的顾客数,则

厅没有座位”相当于“52位顾客中最多1位顾客不来就餐”,所以所求概率为

2. 设曲线函数形式为出;若不能,说明理由.

,这样【答案】不能. 此处a 是未知参数,我们不能采用如上题所用的方法,即取v=ln(y-a )的变换是行不通的,因为这样变换后的v 无法观测.

3. 设随机变量(X , Y )的联合密度函数为

试求 (1)常数k ; (2)(3)(4)【答案】(1)(2)(3)(4)

的非零区域与

的交集如图的阴影部分,

问能否找到一个变换将之化为一元线性回归的形式,若能,试给

因为“顾客来到餐

由图得

4. 设随机变量X 服从区间(-1,1)上的均匀分布,求:

(1)(2)【答案】⑴

(2

当y<0时

所以得

5. 在一批货物中随机抽取80件,发现有11件不合格品,试求这批货物的不合格品率的置信水平为0.90的置信区间.

【答案】此处n=80较大,可用正态分布求其近似置信区间. 不合格品率的为

此处

,因而不合格品率的置信水平为0.90的置信区间为

6. 在入户推销效果研究中,分别用Hartley 检验和Bartlett 检验在显著性水平总体作方差齐性检验.

【答案】在习题中,r=5,每组样本量相同,均为7,可以采用Hartlev 检验,由于样本量大于5,也可以采用Bartlett 检验.

我们首先用Hartley 检验对等方差性作判断. 通过习题的解答我们可以算出各组内的平方和分别为

利用公式

可求得各组的样本方差

的密度函数.

当时

当时

近似置信区间

下对五个

因而统计量H 的值为

对显著性水

由表查

从而拒绝域

于是Bartlett 检验统计量为

对显著性水

故应接受原假设

查表

拒绝域

即认为诸水平的方差满足方差齐性条件. 两种检验的结果是一致的.

上的均匀分布, 求X 与

所以应该接受原假设即认为各个总体方差相等.

接下来计算Bartlett 检验统计量. 习题中已求得

7. 设二维随机变量(X , Y )服从区域Y 的协方差及相关系数.

【答案】因为区域D 的面积为1/2, 所以(X , Y )的联合密度函数为

由此得X 和Y 各自的边际密度函数为 当0

由此可算得X 与Y 的期望与方差

另外还需计算XY 的期望

由此得X 与Y 的协方差及相关系数为