2017年浙江理工大学数字信号处理复试实战预测五套卷
● 摘要
一、综合题(计算、解答、证明)
1. 考虑图的二通道分析合成滤波器组,
设在z 域的输入输出关系,确定合成滤波器
和
求该结构
以使该结构为完全重构滤波器组。
图
【答案】由图可得
1
于是该结构的系统函数即在z 域的输入/输出关系为
要使该结构为完全重构滤波器组,应该满足
这里r 为一正整数。于是由1式可知,应该有
将和代入上式,得到
即有
要满足上式,就应该满足下面两式
由2式得
将3式代入2式就可以得到
再由3式可以得到
2. 设是一个定义在区间
的偶对称序列,而
令
第 2 页,共 32 页
2 3
4
(1)试用器,那么
【答案】(1)(2)由于将
来表示
构成一个低通滤波
(2)这两个序列是否都能够作为线性相位FIR 滤波器的冲激响应? 如果
将构成什么类型的频选滤波器?
实际上是
的循环移位,根据循环移位后的DFT 的表达式,有
是偶对称的有限长序列,故可以作为线性相位FIR 滤波器的冲激响应。
的循环移位关系用序号来表示,有:
即有
已知由
是偶对称的,即有
1的关系,
可知
也是偶对称的有限长序列,
因此和
分别是滤波器
这就是说,两个滤波器有相同的抽样幅频响应,因此,如果当然也构成一个低通滤波器。
3. 如果证明DFT 的初值定理
【答案】由IDFT 定义式
可知
;构成一个低通滤波器,那么
也可以作为线性相位的频率响应的抽样,
FIR 滤波器的冲激响应。 由于DFT 是频谱的抽样值,所以因为
故有
第 3 页,共 32 页
4. 模拟带通滤波器的指标如图所示,用B 型特性逼近,求其系统函数。
图
【答案】带通滤波器的中心频率为
标称化带宽(相对带宽)
而
这说明
与
并不关于
几何对称,所以应该调整(这里显然应该增大)
不变,由于
下面就可以求出通带边界将衰减化为平方幅度
于是有
由又
于是有
因此
第 4 页,共 32 页
或者如果増大这自然就会使
会使高端过渡带变宽,不满足设计要求;如果増大因此,
应该增大
实际上,只需要保持
增大了。因此,应以
为准来计算低通的
阻带边界
将使低端过渡带变窄,特性比要求的还好些,
的B 型低通滤波器的参数和N 了。
故可以得到