当前位置:问答库>考研试题

2017年陕西科技大学资源与环境学院601高等数学考研冲刺密押题

  摘要

一、选择题

1. 设函数

A. a<-2 B. a>2 C. -2<a <0 D. 0<a <2 【答案】D 【解析】因为

(1)先讨论

①当a-1≤0时,即a ≤1时为定积分; ②当a-1>0时,

③当a-1≥1时,即a ≥2时发散. (2)再讨论反常积分因为

①当a >0时,此反常积分收敛; ②当a ≤0时,此反常积分发散。 由(1)(2)知,若反常积分

收敛,则0<a <2.

.

为无界函数的反常积分,且当a-1<1,即1<a <2时收敛;

.

,若反常积分

收敛,则( ).

2. 设u y )(x ,在平面有界闭区域D 上连续,在D 的内部具有二阶连续偏导数,且满足及

,则( )

A.u (x ,y )的最大值点和最小值点必定都在区域D 的边界上 B.u (x ,y )的最大值点和最小值点必定都在区域D 的内部

C.u (x ,y )的最大值点在区域D 的内部,最小值点在区域D 的边界上 D.u (x ,y )的最小值点在区域D 的内部,最大值点在区域D 的边界上 【答案】A

【解析】由于u (x ,y )在平面有界闭区域D 上连续,故u (x ,y )在D 内必然有最大值和最小值,并且若在内部存在驻

,由条件知,

,则在这个点

,则u (x ,y )不是极值点,当然

也不是最值点,故u (x ,y ) 的最大值点和最小值点必定都在区域D 的边界上。

3. 下题中给出了四个结论,从中选出一个正确的结论:

设函数f (x ,y )在点(0,0)的某邻域内有定义,且则有( ).

曲面曲线曲线【答案】(C )

【解析】函数f (x ,y )在点(0,0)处的两个偏导数存在,不一定可微分,故(A )不对. 由于函数存在偏导数不能保证可微分,从而不能保证曲面z=f(x ,y )在点(0,0,f (0,0))处存在切平 面,因而(B )不对; 若z=f(x ,y )在点(0,0,f (0,0))处存在连续偏导数,曲,而不是(3,-1,1),故(B )也不对. 面在该点处有切平面,其法向量是(3,-1,-1)

取x 为参数,则曲线x=x,y=0,z=f(x ,0)在点(0,0,f (0,0))处的一个切向量为(l ,0,3),故 (C )正确.

4. 下列曲线积分。

在点在点在点

的一个法向量为

的一个切向量为

的一个切向量为

中,有平面线

【答案】B 【解析】对于

在D 内虽有

成立。但不能断定该线积分在D 内与

上与路径无关的有( )。

路径无关,因为D 不是单连通域,而

则线积分

在D 上与路径有关。

,由于

而对于(2)和(3)

即其被积式在D 上是某个二元函数的全微分,则线积分

,由于

在D

上与路径无关。而对线积分

5. 函数f (x , y )的两个偏导数

( )。

A. 必要条件 B. 充分条件

,则线积分在D 不与路径有关。

在点处连续是f (x , y )在点处可微的