当前位置:问答库>考研试题

2017年山西师范大学数学与计算机科学学院828高等代数考研仿真模拟题

  摘要

一、填空题

1. 由曲线为_____。

【答案】

【解析】由题意得

2. 设

【答案】

,则

3. 设为质量均匀分布的半圆

【答案】【解析】

4. 设数

【答案】共面 【解析】由

第 2 页,共 52 页

围成的均匀薄板对坐标原点的转动惯量

,则_____。

【解析】令

线密度为,则对x 轴的转动惯量_____。

不全为0,使,则a ,b ,c 三个向量是_____的.

,即a ,b ,c 共面.

5. 设L 为圆周

【答案】-2π 【解析】 6. 过直线

的正向,则

_____。

且平行于曲线【答案】

【解析】由题意设所求平面为

在点

处的切线的平面方程为_____。

在曲线的两边对X 求导数得。

将点故曲线在即解得

代入,解得,

。 。

处的切线的方向向量为

由题意知,所求平面的法向量与切线的方向向量垂直,

,故所求平面方程为。

二、计算题

7. 试确定积分区域D ,使二重积分

达到最大值.

大于所围的

【答案】由二重积分的性质可知,当积分区域D 包含了所有使被积函数等于零的点,而不包含使被积函数平面闭区域时,此二重积分的值达到最大.

第 3 页,共 52 页

小于零的点,即当D 是椭圆

8. 计算下列对面积的曲面积分:

,其中为平面

,其中为平面

,其中为球面

,其中为锥面

的部分。

【答案】(1)在上,直线

。在xOy 面上的投影区域D xy 为由x 轴、y 轴和

上上被柱面

在第一卦限中的部分;

在第一卦限中的部分;

的部分;

所截得的有限

所围成的三角形闭区域,因此

(2)在上,成的三角形闭区域。因此

。在xOy 面上的投影区域为由x 轴、y 轴和直线

所围

(3)

xOy

面上的投影区

。由于积分曲面关于yOz 面和zOx 面均对称,故有

于是

第 4 页,共 52 页