当前位置:问答库>考研试题

2017年昆明理工大学F002概率论与数理统计复试实战预测五套卷

  摘要

一、计算题

1. 先抛一枚硬币,若出现正面(记为Z ),则再掷一颗骰子,试验停止;若出现反面(记为F ),则再抛一次硬币,试验停止,那么该试验的样本空间

【答案】

2. 写出下列随机试验的样本空间:

(1)抛三枚硬币; (2)抛三颗骰子;

(3)连续抛一枚硬币,直至出现正面为止;

(4)口袋中有黑、白、红球各一个,从中任取两个球;先从中取出一个,放回后再取出一个;(5)口袋中有黑、白、红球各一个,从中任取两个球;先从中取出一个,不放回后再取出一个.

【答案】

⑴共含有

(2)

(3)(4)(5)

个样本点,其中0表示反面,1表示正面,(3)中的0与1也是此意.

共含有

个样本点.

共含有可列个样本点.

{黑黑,黑白,黑红,白黑,白白,白红,红黑,红白,红红}. {黑白,黑红,白黑,白红,红黑,红白}.

是什么?

3. 在平面上画有间隔为d 的等距平行线,向平面任意投掷一个边长为a , b ,c (均小于d )的三角形,求三角形与平行线相交的概率.

【答案】任意投掷此三角形,该三角形与平行线相交有以下三种情况:三角形的一个顶点在平行线上、一条边与平行线重合、两条边与平行线相交,由确定概率的几何方法知:前两种情况出现的概率为零,所以只要去确定两条边与平行线相交的概率,为此记ab ,ac ,be 与平行线相交的概率,则所求概率为

为求知

因为三角形的边a 与平行线相交意味着:ab 与平行线相交,或ac 与平行线相交;b 与平行线相交意味着:ab 与平行线相交,或be 与平行线相交;c 与平行线相交意味着:ac 与平行线相交,

第 2 页,共 28 页

分别为两条边

由蒲丰投针问题,只要将两条边与平行线相交的问题转化为每条边与平行线

分别为三条边a ,b ,c 与平行线相交的概率,则由蒲丰投针问题

相交的问题,为此又记

或be 与平行线相交,所以有

4. 设离散随机变量X 服从几何分布以此求E (X )和

【答案】记

线

. 试求X 的特征函数, 并

它的前二阶导数为

由此可算得几何分布的期望和方差为

5. 已知某种材料的抗压强度下:

(1)求平均抗压强度的置信水平为95%的置信区间; (2)若已知

求平均抗压强度的置信水平为95%的置信区间;

s=35.2176在未知时,的置信水平为95%的置信区间为

查表得,

因而的置信水平为95%的置信区间为

(2)在查表得,(3)此处,

因而

已知时,的置信水平为95%的置信区间为

,因而的置信水平为95%的置信区间为

,查表得

的置信水平为95%的置信区间为

第 3 页,共 28 页

,现随机地抽取10个试件进行抗压试验,测得数据如

(3)求的置信水平为95%的置信区间. 【答案】(1)经计算得,

由此可以得到的置信水平为95%的置信区间为[24.2239,64.1378].

6. 某电子计算机主机有100个终端, 每个终端有80%的时间被使用. 若各个终端是否被使用是相互独立的, 试求至少有15个终端空闲的概率.

【答案】记X 为100个终端中被使用的终端个数, 则极限定理, 所求概率为

这表明至少有15个终端空闲的概率近似为0.9155.

7. 某餐厅每天接待400名顾客, 设每位顾客的消费额(元)服从(20, 100)上的均匀分布, 且顾客的消费额是相互独立的. 试求:

(1)该餐厅每天的平均营业额;

(2)该餐厅每天的营业额在平均营业额±760元内的概率. 【答案】记

为第i 位顾客的消费额, 则

, 所以

而该餐厅每天的营业额为

. 利用棣莫-拉普拉斯中心

(1)该餐厅每天的平均营业额为

(2)利用林德伯格-莱维中心极限定理, 可得

这表明:该餐厅每天营业额在23240到24760元之间的概率近似为0.90.

8. 设

来自贝塔分布族

的一个样本, 寻求(a , b )的充分统计量.

【答案】样本的联合密度函数为:

由因子分解定理,

是充分统计量.

二、证明题

9. 设总体概率函数是p (x ; 0), g (θ)的任一估计

们只需要考虑基于充分统计量的估计.

【答案】我们将均方误差作如下分解

第 4 页,共 28 页

是其样本,

,证明:

是θ的充分统计量,则对

这说明,在均方误差准则下,人