当前位置:问答库>考研试题

2018年山西农业大学动物科技学院314数学(农)之工程数学—线性代数考研仿真模拟五套题

  摘要

一、解答题

1.

为三维单位列向量,并且

证明:

(Ⅰ)齐次线性方程组Ax=0有非零解; (Ⅱ)A

相似于矩阵

故Ax=0有非零解.

(Ⅱ)由(Ⅰ

)知向量.

又且

另外,由

故可知

为A 的特征值

,为4的2重特征值

为对应的特征向量.

为A 的3个

为4的单重特征值.

故A

有零特征值

的非零解即为

对应的特征

【答案】(Ⅰ)由于A 为3阶方阵,且

为两个正交的非零向量,从而线性无关.

线性无关的特征向量,

2. 设线性方程

m

即A

相似于矩阵

试就讨论方程组的解的悄况,备解时求出其解.

【答案】

对线性方程组的增广矩阵作初等行变换,如下

专注考研专业课13

年,提供海量考研优质文档!

1

)当

则方程组有惟一答

:

(2)

则方程组有无穷多可得其一个特解

解. 此时原方程组与同解,解得其基础解系为

为任意常数. 此时方程组无解. 时

故原方程组的通解为

(3)当(4)当

3.

设n 维

列向量

【答案】记

此时方程组无解

.

线性无

关,其中S

是大于2的偶数. 若矩

试求非齐次线性方程组

的通解.

方程组①化为:

整理得,由

线性无关,得

显然①与②同解.

下面求解②:对②的增广矩阵作初等行变换得(注意X 是偶数)

从而组的基础解系为数.

有无穷多解. 易知特解为

从而②的通解,即①的通解为

对应齐次方程A 为任意常

专注考研专业课13年,提供海量考研优质文档!

4.

已知其中E

是四阶单位矩阵是四阶矩阵A 的转置矩阵

求矩阵A

【答案】

作恒等变形,

有即

故矩阵可逆.

则有

以下对矩阵做初等变换求逆,

所以有

二、计算题

5.

【答案】

是一组n 维向量,已知n

维单位坐标向量线性无关.

可由

线性无关

线性表示

能由它们线性表示,

证明