2018年山西农业大学林学院314数学(农)之工程数学—线性代数考研强化五套模拟题
● 摘要
一、解答题
1.
设矩阵.
【答案】
求A 的特征值,并讨论A 是否可对角化? 若A 可对角化,则写出其对角
于是A 的3
个特征值为(Ⅰ)当
且
时,A 有3个不同特征值,故4可对角化,且可对角化为
(Ⅱ)当a=0时
,
此时A 有二重特征值1,
仅对
应1个线性无关的特征向量,故此时A 不可对角化.
(Ⅲ)
当
时
,
此时
A
有二重特征
值
而
仅对应1个线性无关的特征向量,故此时A 不可对角化.
2.
已知其中E
是四阶单位矩阵是四阶矩阵A 的转置矩阵
,
求矩阵A
【答案】
对
作恒等变形,
有即
由
故矩阵可逆.
则有
以下对矩阵做初等变换求逆,
所以有
3. 证明n
阶矩阵
与相似.
【答案】
设 分别求两个矩阵的特征值和特征向量为,
专注考研专业课13年,提供海量考研优质文档!
故A 的n 个特征值为
且A 是实对称矩阵,则其一定可以对角化,且
所以B 的n 个特征值也为
=-B的秩显然为1,故矩阵B 对应n-1重特征值
对于n-1重特征值
由于矩阵(
0E-B )
的特征向量应该有
n-1个线性无关,进一步
矩阵B 存在n 个线性无关的特征向量,即矩阵B 一定可以对角化,且从而可
知n
阶矩阵
与
相似.
4.
设n 维
列向量
【答案】记
线性无
关,其中S
是大于2的偶数. 若矩阵
试求非齐次线性方程组
的通解.
方程组①化为:
整理得,由
线性无关,得
显然①与②同解.
下面求解②:对②的增广矩阵作初等行变换得(注意X 是偶数)
相关内容
相关标签