2017年江苏大学财经学院886概率论与数理统计基础考研导师圈点必考题汇编
● 摘要
一、证明题
1. 用概率论的方法证明:
【答案】设
为独立同分布的随机变量序列, 其共同分布为参数
服从参数
的泊松分布
故
又由泊松分布的可加性知, 理知
的泊松分布. 由林德伯格-莱维中心极限定
2. 设二维随机变量(X , Y )服从单位圆内的均匀分布, 其联合密度函数为
试证:X 与Y 不独立且X 与Y 不相关 【答案】先求边际密度函数
所以由又因为
和
知X 与Y 不独立.
在对称区间上是偶函数, 故
从而
所以X 与Y 不相关.
3. 设
是来自
的样本,证明
为
没有无偏估计.
【答案】(反证法)假设的无偏估计,则
由上式可知,等式的左边关于处处可导,而等式的右边在=0处不存在导数. 因此,假不成立,即
没有无偏估计.
4. 设()为n 维随机变量, 其协方差矩阵存在. 证明:若
使得
则以概率1
在各分量之间存在线性关系, 即存在一组不全为零的实数
【答案】由于使得
另一方面,
意味着B 非满秩, 故存在一组不全为零的实数向量
,
方差为零的随机变量必几乎处处为常数, 故存在常数a , 使得
5. 设事件A ,B ,C 的概率都是1/2,且P (ABC )=+P(AC )+P(BC )-1/2.
【答案】因为
上式移项即得结论. 6. 记
证明
【答案】
由
得
证明:2P (ABC )=P(AB )
7. 设
服从多项分布
其概率函数为:
其中即
其中
,i=l, ……k ,
.
记
并把这一分布记作
. 证明:的后验
为参数,
若
的先验分布为Dirichlet 分布,
分布为Dirichlet 分布
【答案】因为的后验概率函数为
所以的后验分布服从Dirichlet
分布
,其中
8. 设g (x )为随机变量X 取值的集合上的非负不减函数,且E (g (X ))存在,证明:对任意的
有
【答案】仅对连续随机变量X 加以证明. 记p (x )为X 的密度函数,则
二、计算题
9. 用天平称某种物品的质量(砝码仅允许放在一个盘中),现有三组法码:(甲)1,2,2,5,10(g );(乙)1,2,3,4,10(g );(丙)1,1,2,5,10(g ),称重时只能使用一组砝码. 问:当物品的质量为lg ,2g ,…,l0g 的概率是相同的,用哪一组砝码称重所用的平均砝码数最少?
【答案】分别用X ,Y ,Z 表示用甲、乙、丙三组砝码称重时所用的砝码数.
;2个砝码可称4种物(1)用甲组法码称重时,1个砝码可称4种物品(1,2,5,10(g ));3个砝码可称2种物品(8,9(g )品(3,4,6,7(g ))). 所以X 的分布列为列为
表
1