当前位置:问答库>考研试题

2017年郑州大学概率论复试仿真模拟三套题

  摘要

一、计算题

1. 从一批钢管抽取10根,测得其内径(单位:mm )为:

试分别在下列条件下检验假设(

设这批钢管内直径服从正态分布(1)已知【答案】(1)当查表知

(2)未知.

.

已知时,应采用检验,此时检验的拒绝域为若取

由样本数据计算如下结果,

检验统计量未落入拒绝域中,应接受原假设,不能认为(2)当未知时,应采用t 检验,拒绝域为显著性水

平s=0.4760,

查表

一其中检验统计量

由样本观测值计算

故接受原假设.

2. 设二维随机变量(X , Y )的联合密度函数如下, 试求(X , Y )的协方差矩阵.

(1)(2)

【答案】(1)因为

可分离变量, 所以X 与Y 相互独立, 由此知

所以

由此得(X , Y )的协方差矩阵为

(2)利用

的对称性可得

所以

第 2 页,共 17 页

又因为

又因为

所以

由此得

的协方差矩阵为

3. 测量到某一目标的距离时,发生的随机误差X (m )具有密度函数

求在三次测量中,至少有一次误差的绝对值不超过30m 的概率. 【答案】记Y 为三次测量中误差的绝对值不超过30m 的次数,则测量中误差的绝对值不超过30m”的概率,由

可知

所以“三次测量中至少有一次误差的绝对值不超过30m”的概率为

4. 某人想用10000元投资于某股票,该股票当前的价格是2元/股. 假设一年后该股票等可能的为1元/股和4元/股. 而理财顾问给他的建议是:若期望一年后所拥有的股票市值达到最大,则现在就购买;若期望一年后所拥有的股票数量达到最大,则一年以后购买. 试问理财顾问的建议是否正确? 为什么?

【答案】如果现在就购买2元/股,则10000元可购买5000股. 记X 为一年后所拥右的股票市值X 的分布列为

1

所以E (X )=12500元,比一年后购买(市值为10000元)大.

如果一年后购买,记Y 为一年后所购股票数,则10000元等可能地购买10000/1=10000股或10000/4=2500股,所以Y 的分布列为

2

由此得E (Y )=5000+1250=6250(股),比现在就购买(5000股)多.

第 3 页,共 17 页

其中P 为“一次

因此,理财顾问的建议是正确的.

5. 设

是来自

的样本,

试求常数c 使得

的自由度.

【答案】由条件:立, 因而

, 故

这说明当

时,

, 自由度为

相互独

服从t 分布, 并指出分布

6. 口袋中有一个球,不知它的颜色是黑的还是白的. 现再往口袋中放入一个白球,然后从口袋中任意取出一个,发现取出的是白球,试问口袋中原来那个球是白球的可能性为多少?

【答案】记事件A 为“取出的是白球”,事件B 为“原来那个球是白球”.容易看出

另外由于对袋中原来那个球的颜色一无所知,故设是合理的. 由贝叶斯公式得

7. 从一个装有m 个白球、n 个黑球的袋中进行有返回地摸球,直到摸到白球时停止. 试求取出黑球数的期望.

【答案】令X 为取到白球时已取出的黑球数,则Y=X+1服从几何分布E (Y )=(n+m)/m=n/m+l,由此得E (X )=E(Y )-l=n/m.

8. 设X 和Y 是相互独立的随机变量, 且

求Z 的分布列.

【答案】因为X , Y 相互独立, 所以其联合密度函数为

由此得

第 4 页,共 17 页

所以

如果定义随机变量Z

如下