2017年中国矿业大学概率论与数理统计(同等学力加试)复试仿真模拟三套题
● 摘要
一、计算题
1. 设随机变量X , Y 独立同分布, 在以下情况下求随机变量
(1)X 服从p=0.5的(0-1)分布• (2)X 服从几何分布, 即
【答案】(1)因为X 与Y 的可能取值均为0或1, 所以1, 因此
(2)因为X 服从几何分布, 所以由此得
2. 甲口袋有1个黑球、2个白球,乙口袋有3个白球. 每次从两口袋中各任取一球,交换后放入另一口袋. 求交换n 次后,黑球仍在甲口袋中的概率.
【答案】设事件且
所以由全概率公式得
得递推公式
将
代入上式可得
由此得
第 2 页,共 18 页
的分布列.
的可能取值也为0或
为“第i 次交换后黑球仍在甲口袋中”,记
则有
3. 设a 为区间(0, 1)上的一个定点, 随机变量X 服从区间(0, 1)上的均匀分布. 以Y 表示点X 到a 的距离. 问a 为何值时X 与Y 不相关.
【答案】由题设条件知
所以由此方程等价于
从中解得在(0, 1)内的实根为a=0.5, 即a=0.5时, X 与Y 不相关.
4. 请叙述下列事件的对立事件:
(1)A=“掷两枚硬币,皆为正面”; (2)B=“射击三次,皆命中目标”; (3)C=“加工四个零件,至少有一个合格品 【答案】(1)(2)(3)
“掷两枚硬币,至少有一反面
“射击三次,至少有一次不命中目标 “加工四个零件,全为不合格品
可得方程
又因为
5. 甲、乙两个赌徒在每一局获胜的概率都是1/2.两人约定谁先赢得一定的局数就获得全部赌本. 但赌博在中途被打断了,请问在以下各种情况下,应如何合理分配赌本:
(1)甲、乙两个赌徒都各需赢k 局才能获胜;
(2)甲赌徒还需赢2局才能获胜,乙赌徒还需赢3局才能获胜; (3)甲赌徒还需赢n 局才能获胜,乙赌徒还需赢m 局才能获胜. 【答案】按甲、乙最终获胜的概率大小来分赌本.
(1)在这种情况下,甲、乙两人所处地位是对称的,因此甲、乙最终获胜的概率都是1/2,所以甲得全部赌本的1/2,乙得全部赌本的1/2.
(2)最多再赌4局必分胜负,若以事件表示再赌下去的第i 局中甲赢,i=l,2,3,4,则
所以甲得全部赌本的11/16,乙得全部赌本的5/16. (3)再赌n+m-1局必分胜负,共有此n+m-1局中至多赢m —1局,
这共有
第 3 页,共 18 页
种等可能的情况,而“甲最终获胜”意味着:乙在
种等可能的情况,若记
则
所以甲得全部赌本的
乙得全部赌本的
6. 一个电子设备含有两个主要元件, 分别以X 和Y 表示这两个主要元件的寿命(单位:h ). 若设其联合分布函数为
试求这两个元件的寿命都超过120h 的概率. 【答案】所求概率为
这表明:两个主要元件的寿命都超过
的概率为0.0907.
7. 某建筑工地每天发生事故数的现场记录如下:
表
1
试在显著性水平
下检验这批数据是否服从泊松分布.
【答案】本题与上题完全类似,仍为检验总体是否服从泊松分布的分布拟合检验问题. 由于有几类的观测个数偏少,为使用近似分布,需要把后面四类合并为一类. 于是我们把总体分成4类,在原假设下,每类出现的概率为:
未知参数采用最大似然估计得:
将代入可以估计出诸
于是可计算出检验核计量
表2
如下表:
第 4 页,共 18 页
相关内容
相关标签