当前位置:问答库>考研试题

2017年郑州轻工业学院数学基础(高等数学,线形代数,概率论)复试仿真模拟三套题

  摘要

一、计算题

1. 某班n 个战士各有1支归个人保管使用的枪,这些枪的外形完全一样,在一次夜间紧急集合中,每人随机地取了1支枪,求至少有1人拿到自己的枪的概率.

【答案】这是一个配对问题. 以A ;记事件“第i 个战士拿到自己的枪”,i=l,2,…,n. 因为

所以由概率的加法公式

当n 较大时,上式右端近似于

2. 某组装产品内有部分噪音很大的次品,很伤脑筋,产生次品的原因似乎是由于这种组装品的某个部位的间隙过大引起的,为检验这个认识是否正确,特从正品A 和次品八2中各抽出8个,对其间隙进行了测量,测量数据如下(单位:μm )

1

在正态分布假设下请对

中的间隙的均值间是否存在显著差异进行检验(取

).

【答案】这是单因子(间隙)二水平等重复试验,其均值比较可用两种方法进行检验. 方法一,方差分析法,具体操作如下. (1)计算各个和:(2)计算各个平方和:

第 2 页,共 19 页

(3)列出方差分析表:

2

(4)判断:若给定显著性水平于

方法二,双样本t 检验.

可查得拒绝域为由

故因子A 显著,即正品与次品的该部位的平均间隙有显著差异.

在正态总体方差相等的条件下两均值的比较还可用双样本的t 检验. 检验统计量为

其中

是两样本量,

是两样本均值,

如今由样本可算得

对给定显著性水

由于

拒绝域

查表

故应拒绝两均值相等得假设,此结论与方差分析相同.

的密度函数;(2)

这里两种检验的结果相同的现象不是偶然的,因为自由度为的t 变量的平方就是布,因此这两个方法是等价的. 其临界值亦有

3. 设随机变量X 服从区间(0,2)上的均匀分布,(1)求

【答案】X 的密度函数为

(1)其反函数为

的可能取值区间为(0,4). 因为

所以

在区间(0,2)上为严格单调增函数,的密度函数为

(2)

第 3 页,共 19 页

4. 在一本书上我们随机地检查了10页, 发现每页上的错误数为

试计算其样本均值、样本方差和样本标准差. 【答案】样本均值

样本标准差

5. 设

试求

的相关系数.

样本方差

独立同分布, 其共同分布为

【答案】先计算的期望、方差与协方差

.

然后计算

的相关系数

.

6. 已知

【答案】

7. 对给定的n 组数据可以建立如下回归方程

反之,若我们关心的是x 如何依赖y 的取值而变动,则可以建立另一个回归方程

试问这两条直线在直角坐标系中是否重合?为什么?若不重合,它们有元交点?若有,试给出交点的坐标.

【答案】一般不重合. 因为回归方程

可化为

化为

第 4 页,共 19 页

若我们关心的是y 如何依赖x 的取值而变动,则