2017年中国矿业大学(北京)理学院802高等代数考研强化模拟题
● 摘要
一、计算题
1. 求下列各极限:
【答案】
2. 求曲线y=ex 在点(0,1)处的切线方程。
【答案】
,即x-y+1=0。 故曲线在(0,1)处的切线方程为y-1=1·(x-0)
3. 设a>1, 最小值。
【答案】由考察函数
在内的驻点为x (a )。问a 为何值时, x (a )最小? 并求出
, 得惟一驻点
。
, 在a>1时的最小值。令
得惟一驻点, 最小值。
4.
设
, 当, ;当时, , 因此为极小值, 也是
为曲
面
.
的上侧,计算曲面积
分
【答案】设为所围成部分的下侧,记由
所围立体为,则
因为
所以
因此,计算得
.
5. 在抛物线y=x2上取横坐标为x 1=1及x 2=3的两点,作过这两点的割线. 问该抛物线上哪一点的切线平行于这条割线?
【答案】割线的斜率
2
即2x 0=4, 故x 0=2,
假设抛物线上点(x 0,x 0)处的切线平行于该割线,则有由此得所求点为(2,4)。
6. 写出下列级数的前五项:
【答案】
7. 下列函数中哪些是偶函数,哪些是奇函数,哪些既非偶函数又非奇函数
?
【答案】(1)为偶数。 (2
)
,因
为
,所以f (x )既非偶函数又非奇函数。
(3)(4)(5)
因为
,因为
,所以f (x )为奇函数。
,因为
且
所以f (x )既非偶函数又非奇函数。 (6)
,因为 ,所以f (x )
且
所以f (x )为偶函数。
,因为,所以f (x )为偶函数。