2018年中国人民大学统计学院432统计学[专业学位]之统计学考研核心题库
● 摘要
一、简答题
1. 利用相关系数如何判断变量之间相关的方向和相关关系的密切程度?
【答案】相关系数r 的取值范围在之间。若
表明变量
关关系;若
相关关系;若
相关关系。
当
说明两个变量之间的线性关系越强
时. 可视为中度相关;说明两个变量之间的线性关系越弱。对于一时,
可视为高度相关时,说明两个变量之间的个具体的r 取值,根据经验可将相关程度分为以下几种情况:
当时。视为低度相关;
当表明x 与y 之间存在负线性相关关系;若表明x 与y 之间为完全负线性相关关系。可见当之间存在正线性相表明x 与y 之间为完全正线性时,y 的取值完全依赖于X ,二者之间即为函数关系;当r=0时,说明两者之间不存在线性相关关系,但可能存在其他非线性
相关程度极弱,可视为不相关。但这种解释必须建立在对相关系数的显著性检验的基础之上。
2. 若有线性回归模型问:
(1)该模型是否违背古典线性回归模型的假定,请简要说明。
(2)如果对该模型进行估计,你会采用什么方法?请说明理由。
【答案】(1)该模型违背了古典线性回归模型的假定。古典线性回归模型要求误差项具有等方差性,即对于不同的自变量x 具有相同的方差。而由题意可知,误差项的方差为
量有关。
(2)如果对该模型进行估计,会采用加权最小二乘法。加权最小二乘法是在平方和中加入权
数以调整各项在平方和中的作用。即寻找参数的估计值使得离差平方和
与自变
其中
达到最小。这样,就消除了异方差性的影响。
3. 简述时间序列的预测程序。
【答案】在对时间序列进行预测时,通常包括以下几个步骤:
(1)确定时间序列所包含的成分,也就是确定时间序列的类型;
(2)找出适合此类时间序列的预测方法;
(3)对可能的预测方法进行评估,以确定最佳预测方案;
(4)利用最佳预测方案进行预测。
4. 多元回归分析中为什么需要使用修正的判定系数(可决系数)来比较方程的拟合效果?是如何计算的?
【答案】在多元线性回归分析中,常用修正的判定系数,而不用多重判定系数来衡量估计模
型对样本观测值的拟合优度。这是由于多重判定系数
随着样本解释变量个数的增加
来越高(即的值越是解释变量个数的增函数)。也就是说,在样本容量不变的情况,在模型中增加新
不是一个合适的指标,需加以的解释变量不会改变总离差平方和,但可能增加回归平方和,减少残差平方和,从而可能改变模型的解释功能。因此在多元线性回归模型之间比较拟和优度时,
调整。而修正判定系数
归模型方面要优于多重判定系数修正判定系数的计算公式为
5. 什么是置信区间估计和预测区间估计?二者有何区别?
【答案】(1)置信区间估计,它是对x 的一个给定值_求出y 的平均值的估计区间,这一区间称为置信区间;预测区间估计,它是对x 的一个给定值求出y 的一个个别值的估计区间,这一区间称为预测区间。
(2)置信区间估计和预测区间估计的区别:置信区间估计是求y 的平均值的估计区间,而预测区间估计是求y 的一个个别值的估计区间;对同一个这两个区间的宽度也是不一样的,预测区间要比置信区间宽一些。
6. 简述统计分组的原则。
【答案】采用组距分组时,需要遵循不重不漏的原则。不重是指一项数据只能分在其中的某一组,不能在其他组 中重复出现;不漏是指组别能够穷尽。即在所分的全部组别中每项数据都能分在其中的某一组,不能遗漏。
为解决不重的问题,统计分组时习惯上规定“上组限不在内”。即当相邻两组的上下限重叠时,恰好等于某 一组上限的变量值不算在本组内,而计算在下一组内。而对于连续变量,可以采取相邻两组组限重叠的方法,根 据“上组限不在内”的规定解决不重的问题,也可以对一个组的上限值采用小数点的形式,小数点的位数根据所 要求的精度具体确定。
7. 什么叫变异、变量和变量值,试举例说明。
【答案】标志在同一总体不同总体单位之间的差别称为变异。例如:人的性别标志表现为男、
其值不会随着解释变量个数k 的増加而增加,因此在用于估计多元回
女;年龄标志表现为20岁、30岁等。
变异标志又称为变量,是说明现象某种特征的概念,其特点是从一次观察到下一次观察结果会呈现出差别或 变化。变量的具体取值称为变量值。具体包括:
(1)分类变量,如“性别”就是分类变量,其变量值为“男”或“女”;
“二等品”、“三等品”、(2)顺序变量,如“产品等级”就是顺序变量,其变量值可以为“一等品”、
“次品”等;
(3)数值型变量,如“年龄”是连续数值型变量,变量值为非负数;“企业数”是离散数值型变量,变量 值为 1,2,……
8. 分层抽样与整群抽样有何异同?它们分别适合于什么场合?
【答案】(1)相同点:分层抽样和整群抽样都是需要事先按某一标志对总体进行划分的随机抽样。
不同点主要在于:分层抽样的划分标志与调查标志有密切关系,而整群抽样的划分标志不一定与调查标志有 关;分层抽样在总体的每个层内随机抽样,而整群抽样在总体全部群体中随机抽取一部分群体;比较计算公式可知,分层抽样的抽样误差取决于各层总体方差的平均数,而整群抽样的抽样误差取决于总体的群间方差;分层抽 样的目的(优点)主要是缩小抽样误差,满足推断各子总体数量特征的需要,而整群抽样的目的(优点)主要是 扩大抽样单位,简化抽样组织工作。
(2)适用场合:分层抽样用于层间差异大而层内差异小时,以及为了满足分层次管理决策需要时;整群抽样用于群间差异小而群内差异大时,或只有以群体为抽样单位的抽样框时等。
9. 简述相关系数和函数关系的差别。
【答案】变量之间的关系可分为两种类型:函数关系和相关关系。
(1)函数关系 设有两个变量
和(2)相关关系
相关关系是指变量之间确实存在的但关系值不固定的相互依存关系。在这种关系中,当一个(或几个)变量的值确定以后,另一个变量的值虽与它(或它们)有关,但却不能完全确定。这是一种非确定的关系。
10.简述非抽样误差类型。
【答案】非抽样误差是相对抽样误差而言的,是指除抽样误差之外的,由于其他原因引起的样本观察结果与总体 真值之间的差异。无论是概率抽样、非概率抽样,或是在全面调查中,都有
变量随变量一起变化,并完全依赖于当变量取某个数值时,依确定的关系取相应的值,则称是的函数。由此可见函数关系是一种一一对应的确定性关系。