当前位置:问答库>考研试题

2017年兰州理工大学理学院870高等代数考研题库

  摘要

一、选择题

1. 设

是非齐次线性方程组

的两个不同解,

的基础解系,

为任意常数,

则Ax=b的通解为( )•

【答案】B 【解析】因为中

不一定线性无关. 而

由于

因此

线性无关,且都是

的解. 是

的特解,因此选B.

所以

因此

不是

的特解,从而否定A , C.但D

故是的基础解系. 又由

2. 下面哪一种变换是线性变换( )

.

【答案】C

【解析】

,而

不一定是线性变换,

比如

不是惟一的.

.

也不是线性变换,

比如给

3. 设A 、B 、C 均为n 阶矩阵,E 为n 阶单位矩阵,如B=E+AB, C=A+CA, 则B —C 为( ).

A.E B.-E C.A D.-A

【答案】A

【解析】由题设(E-A )B=E, 所以有

B (E-A )=E.

又C (E-A )=A,故

(B-C )(E-A )=E-A.

结合E-A 可逆,得B-C=E.

4. 设A 为4×3矩阵,常数,则

是非齐次线性方程组的3个线性无关的解,为任意

的通解为( )

【答案】C 【解析】由

于又显然有基础解系.

考虑到

的一个特解,所以选C.

5. 设A 、B 为满足AB=0的任意两个非零矩阵. 则必有( ).

A.A 的列向量组线性相关,B 的行向量组线性相关 B.A 的列向量组线性相关,B 的列向量组线性相关 C.A 的行向量组线性相关,B 的行向量组线性相关 D.A 的列向量组线性相关,B 的列向量组线性相关 【答案】A 【解析】方法1:设由于

又由方法2:设考虑到

不妨设线性相关.

由已知及以上证明知B ’的列线性相关,即B 的行向量组线性相关.

由于AB=0, 所以有

即r (A )>0, r (B )>0, 所以有

R (A )

故A 的列向量组及B 的行向量组均线性相关.

并记A 各列依次为

由于AB=0可推得AB 的第一列

从而

(否则与

是非齐次线性方程

组,所以有解矛盾)

的三个线性无关的解,所

以从而

的一个

是对应齐次线性方程组

的两个线性无关的解.

二、分析计算题

6. 设

是n 维欧氏空间V 中一组向量,而

证明:当且仅当【答案】设

时,

线性无关.

是一个m 元二次型.

线性无关的充分必要条件是对任意不全为0的

都有

即有

故是正定矩阵,当然反之,设若有则有

亦即

由于 7. 设满足

【答案】因为则在之下显然任取故又若但

8. 设

则有 则有

从而

维数相同,故

的一个同构映射,并令

此方程组只有零解,即有都是数域K 上的n 维空间且

线性无关.

为V 的子空间). 证明:存在的子空间

是n 维欧氏空间V 子空间,且的维数小于的维数,证明:必有一个非零向量正

即可.

交于中一切向量

【答案】证法1:由于恰由一切与h 正交的向量组成,所以只要证明