2018年大连海洋大学食品科学与工程715高等数学Ⅱ之工程数学—线性代数考研仿真模拟五套题
● 摘要
一、解答题
1.
已知
且
.
求
又
又
知
即
2. 求个齐次线件JTP
技使它的场础解系由下列向量成.
【答案】由题意,
设所求的方程组为
由这两个方程组知,
所设的方程组的系数都能满足方程组的基础解系为
3.
设
当a , b 为何值时,存在矩阵C 使得AC-CA=B,并求所有矩阵C.
故所求的方程组可取为
解得此方程组
将
代入得,
构
得
故
知
故
【答案】
由题意知
【答案】显然由AC-CA=B可知,若C 存在,则必须是2阶的方阵,设则AC-CA=B
可变形为
即得到线性方程组
若要使C 存在,则此线性方程组必须有解,于是对方程组的增广矩阵进行初等行变换如下,
故当a=-1,b=0时,线性方程组有解,即存在矩阵C , 使得AC-CA=B. 此时
,
所以方程组的通解为
也就是满足AC-C4=B的矩阵C 为
其中
4.
设二次型
为任意常数.
记
(1)证明二次型f
对应的矩阵为(2
)若
【答案】(1)由题意知,
正交且均为单位向量,证明f
在正交变换下的标准形为
故二次型/
对应的矩阵为(2)证明:
设则
而矩阵A
的秩
故f
在正交变换下的标准形为
,由于
所以
为矩阵对应特征值所以
为矩阵对应特征值
所以
的特征向量;
的特征向量; 也是矩阵的一个特征值;
二、计算题
5. 设n 阶矩阵A ,B 满足
【答案】
显然A 与B
的对应A 与B
有对应于
另一方面
,
证明A 与B 有公共的特征值,有公共的特征向量. 则A 不可逆,0是A 的特征值;
同理,0也是B 的特征值,于是A 与B 有公共的特征值0.
的特征向量依次是方程Ax=0和Bx=0的非零解. 于是 的公共特征向量
另一方面. 由矩阵秩的性质
综上,A 与B 有公共的特征向量.
6. 试证;由
【答案】所生成的向量空间记作L ,显然
故
线性无关.
但向量组综上知
所生成的向量空间就是另一方面
,则因
&线性相关,于是B 可由
.
,
线性表示,也即B ∈L.
所以
7. 非齐次线性方程组
当λ取何值时有解? 并求出它的通解.
【答案】这里系数矩阵A 是方阵,但A 中不含参数,故以对增广矩阵作初等行变换为宜,求解如下:
因R (A )=2, 故当R (B )=2,
即当当
时,
或
时,方程组有解.