当前位置:问答库>考研试题

2018年北华大学数学与统计学院902数学综合[专业硕士]之数学分析考研基础五套测试题

  摘要

一、证明题

1. 若f (x )在R 上存在三阶连续导数, 且

, 有

*

证明:f (x )至多是二次多项式. 【答案】只需证:将

在X 处作泰勒展开

将上两式代入所给的等式中, 比较两端可得

时, 有

由三阶导数的连续性, 有

2. 设f (x )在[0, 1]上连续可导, 证明:

【答案】方法一用积分中值定理. 因为

所以

方法二用分部积分法. 因为

第 2 页,共 26 页

,

所以

3. 设

在[0, 1]上连续, 求证:

【答案】分两种情况讨论.

(1)如果f (X )在[0, 1]上不变号, 则

即要证的不等式成立.

如果f (x )在[0, 1]上变号, 则存在又因为f (x )在[0, 1]上连续, 存在

, 使得

使得

f

故有

即要证的不等式成立.

(用微积分基本定理)

二、解答题

4. 设

【答案】由

是定义在是定义在

上的连续的偶函数, 则上的连续的偶函数知.

从而

从而令

第 3 页,共 26 页

专注考研专业课13年,提供海量考研优质文档!

所以原命题成立.

5. 已知函数f 和g 的图像, 试作下列函数的图像;

(1)【答案】

(1)中,

取二者较高者. (2)中,

取二者较低者. 如图1和图2所示.

作在同一坐标系

, 将

作在同一坐标系

图1

图 2

6. 设

【答案】令

第 4 页,共 26 页

, 求f (x ).

. 则