2018年北京建筑大学理学院818线性代数考研仿真模拟五套题
● 摘要
一、解答题
1. 设线性方程
m
【答案】
对线性方程组的增广矩阵
试就
讨论方程组的解的悄况,备解时求出其解.
作初等行变换,如下
(1
)当
即
且
时
则方程组有惟一答:
(2)
当
且
即
且
时
则方程组有无穷多可得其一个特解
解.
此时原方程组与同解,
解得其基础解系为
为任意常数. 此时方程组无解. 时
故原方程组的通解为
(3
)当
(4
)当
2.
已知
与
即
时
此时方程组无解.
相似. 试求a , b , c 及可逆矩阵P ,使
【答案】由
于故B 的特征值为
从而B
可以对角化为
分别求令
所对应的特征向量,
得
有
即a=5.
由
得A ,B 有相同特征值
,
故
再由得b=-2, c=2,于是
分别求A 的对应于特征值1,2, -1的特征向量得
:令
记
有
.
因此
即
则P 可逆,
且
3. 设二次
型
矩阵A 满足AB=0, 其
中
(Ⅰ)用正交变换化二次型(Ⅱ
)求
为标准形,并写出所用正交变换;
【答案】
(Ⅰ)由知,矩阵B 的列向量是齐次方程组Ax=0的解向量.
记
值(至少是二重)
,
根据
值是0, 0, 6.
设
有
对
正交化,
令的特征向量为
有
则是
的线性无关的特征向量.
由此可知
,是矩阵A 的特征
故知矩阵A
有特征值因此,矩阵A 的特征
那么由实对称矩阵不同特征值的特征向量相互正交,
则
解出
再对,单位化,得
那么经坐标变换
即
二次型化为标准形(Ⅱ)因为
又
有
所以由
进而
得
的基础解系是
与由
的解.
对
有非零公共解,求a 的值并求公共解.
知
于是
4. 已知A
是
矩阵,齐次方程组
又知齐
次方程组Bx=0
的基础解系是
(Ⅰ)求矩阵A ;
(Ⅱ
)如果齐次线性方程组
【答案】(1
)记
A
的行向量)是齐次线性方程组
贝腕阵的列向量(即矩阵
作初等行变换,有
相关内容
相关标签