2018年哈尔滨工程大学人文社会科学学院616心理学专业基础综合之现代心理与教育统计学考研基础五套测试题
● 摘要
一、简答题
1. 简述条图、直方图、圆形图(饼图)、线图以及散点图的用途。
【答案】这几种图是统计学中最常用的图形,条图和直方图都用于表示变量各取值结果的次数或相对次数,即次数分布图。不同的是前者用于离散或分类变量,后者用于连续变量(分组后)。圆形图用于表示离散变量的相对次数,即频率,整个圆面积为1,各扇形块表示各类别的频率。线图用于表示连续变量在某个分类变量各水平上的均值,如各年级的考试成绩均分,常用于组间比较中。散点图用于两连续变量的相关分析,可将两变量成对数据的值作为横、纵坐标标于图上,根据散点的形状可以大致判断两变量是否存在相关以及相关的程度。
2. 方差分析的功能及其基本假定条件有哪些?
【答案】方差分析的主要功能在于分析实验数据中不同来源的变异对总变异的贡献大小,从而确定实验中的自变量是否对因变量有重要影响。
运用F 检验进行的方差分析是一种对所有组间平均数差异进行的整体检验。进行方差分析时有一定的条件限制,其假定条件有:
(1)总体正态分布
方差分析同Z 检验及t 检验一样,也要求样本必须来自正态分布的总体。
(2)变异的相互独立性
总变异可以分解成几个不同来源的部分,这几个部分变异的来源在意义上必须明确,而且彼此要相互独立。
(3)各实验处理内的方差要一致
各实验处理内的方差彼此应无显著差异,这是方差分析中最重要的基本假定。
3. 简述编制分组次数分布表的步骤。
【答案】(1)求全距。全距指最大数和最小数两个数据值之间的差距。从被分组的数据中找出最大数和最小数,二者相减所得差数就是全距。
(2)决定组距与组数。组距是指任意一组的起点和终点之间的距离,用符合i 表示。决定组距的大小需要以全距为参考。全距大,则组距可以大一些;全距小,则组距可以小一些。
组数的多少根据组距的多少来定。如果数据个数在100以上,习惯上一般分10〜20组,但经常取12〜16组。数据个数较少时,一般分为7〜9组。如果数据的总体分为正态,那么可以用下面的经验公式计算组数(K ),这样可使分组满足渐进最优关系。
第 2 页,共 19 页 (N
为数据个数,K 取近似整数)。
(3)列出分组区间。分组区间即一个组的起点值和终点值之间的距离,又叫组限。起点值称为组下限,终点值称为组上限,组限有表述组限和精确组限两种。在列出分组区间时要注意:最高组区间应包含最大的数据,最小组应包含最小的数据;最大组或最小组最好是组距i 的倍数;各分组区间一般在纵坐标上按照顺序排列,数值大的分组区间排在上面,数值小的分组区间排在下面;等级次数时,要按照精确组限将数据归类划分到相应的组别中。
(4)等级次数。依次将数据等级到各个相应的组别内,一般用画线计数或写“正”字的方法。
(5)计算次数。根据登记的结果计算各组的次数,计算各组次数的总和即总次数。另外,要核对各组次数总和与数据的总个数是否相等。
4. 直条图适合哪种资料? 自选数据绘制直条图。
【答案】直条图也称条形图,主要用于表示离散型数据资料,即计数资料。它是以条形的长短表示各事物间数量的大小与数量之间的差异情况。条形图中一个轴是分类轴,表示类别,描述计数数据;另一个轴是数量轴,表示大小多少,描述计量数据,在这个轴上数据单的大小取决于原始数据。
5. 对两个以上平均数两两之间的差异检验为什么不能两两之间进行t 检验?
【答案】同时比较的平均数越多,其中差异较大的一对所得t 值超过原定临界值的概率就越大,这时《错误的概率将明显增加,或者说本来达不到显著性水平的差异就很容易被说成是显著了,这时用f 检验就不适宜。比如要比较3个总体平均数之间的差异,如果用t 检验就需要比较3
6. 对于计数数据的统计分析方法有哪些?
【答案】可用于计数数据的统计分析方法有:
多重列联表分析等。
7. 如果你不知道两个变量概念之间的关系,只知道从两个变量的相关系数很高,请问你可能做出什么样的解释?
【答案】(1)两个变量之间的相关系数很高说明两变量存在共变关系,还不能判断两个变量之间的具体关系。
(2)根据相关系数的性质,系数值的大小只是表示变量变化趋势(0 (3)两个变量之间的相关性只是显示出变量的变化趋势,并不能显示出两个变量的因果关 第 3 页,共 19 页 次,假如每次比较的置信区间为95%, 那么3 次比较后检验的可靠性就降低为检验、配合度检验、四个表独立检验、 系。如果相关系数很高,还需要考察是正相关还是负相关,这样来说明两个变量究竟是向同一个方向还是相反方向变化。 8. 估计总体平均数落入该区间的正确可能性概率为1-«,犯错误的可能性概率为«。1. 在进行差异的显著性检验时,若将相关样本误作独立样本处理,对差异的显著性有何影响,为什么? 【答案】(1)在进行差异的显著性检验时,首先需要考虑样本是否服从正态分布,如果服从正态分布,还需要考虑总体方差是否已知,然后看样本是否是独立样本。若将相关样本误作独立样本处理,则忽视了样本数据之间的一致性,导致错误地运用计算公式,差异的显著性也会受到误估,使本来可能有显著差异变成无显著差异。 (2)因为相关样本与独立样本不同,会运用不同的计算方法计算显著性。相关样本与独立样本是根据两个样本是否来自同一个总体来划分的。 ①如果是独立样本,其和(或差)的方差等于各自方差的和,即 在进行差异的显著性检验中采用以下公式: ②相关样本之间存在着一一的对应关系。如果是相关样本前后两次结果则相互影响,而不独立。当两个变量之间相关系数为r 时,两变量差的方差为: 在进行差异的显著性检验中采用以下公式: 由计算公式可以看出,独立样本和相关样本在进行差异的显著行检验时,使用了不同计算公式,相关样本的标准误可能会比独立样本的标准误小,使得计算出的Z 值大,从而更容易达到显著性水平,所以如果将相关样本误作独立样本处理,会使本来可能有显著差异变成无显著差异。 第 4 页,共 19 页
相关内容
相关标签