2018年广西师范大学教育科学学院347心理学专业综合[专业硕士]之现代心理与教育统计学考研强化五套模拟题
● 摘要
一、概念题
1. 无偏估计
【答案】无偏估计是评价估计量的好坏的一个指标。设参数则它表明对 估计量进行多次观测,其正负偏差趋于抵消,而平均取值正好是待估参数,则称
的无偏估计量。如样本均值
2. 检验的显著性水平
【答案】检验的显著性水平指在假设检验中,虚无假设正确时而拒绝虚无假设所犯错误的概率。在假设检验中有可能会犯错误,如果虚无假设正确却把它当成错误的加以拒绝,犯这类错误的概率用a 表示,a 就是假设检验中的显著性水平。通常选择α=0.05作为检验的显著性水平。也就是说每当实验结果发生的概率小于或等于0.05的时候,就拒绝虚无假设。
3. 标准分数
【答案】标准分数指以标准差为单位的一种差异量数,又称Z 分数或基分数。它等于一数列中各原始分数与其平均数的差,再除以标准差所得的商,公式为:
数据的标准分数
,为原始数据的值,式中,Z 为某原始为该组数据的平均数,为该组数据的标准差。标准分是总体均值的无偏估计量。 为参数的估计量为若满足,数的平均数为0,标准差为1。标准分数是一种不受原始测量单位影响的数值,用来表示一个原始分数在团体中所处位置的相对位置量数。其作用除了能够表明原数据在其分布中的位置外,还能对未来不能直接比较的各种不同单位的数据进行比较。如比较各个学生的成绩在班级成绩中的位置或比较某个学生在两种或多种测验中所得分数的优劣。
4. T 分数
T 分数指由正态分布上的标准分数转换而来的等距量表分数。T 分数以50为平均数,【答案】
以10为标准差。T 分数是Z 分数的变形,因为Z 分数有负值和小数,人们不习惯,所以采用这个公式处理。经过变换,所得的分数全是整数,50分为普通,50分以上越高越好,50分以下越低越差。T 分数的意义及其优点和标准分数相同,不同之处是消除了小数和分数。
二、简答题
5.
检验法在计数数据的分析中有哪些应用? 【答案】检验因研究的问题不同,可以细分为多种类型,如配合度检验、独立性检验、同质性检验等等。
(1)配合度检验主要用来检验一个因素多项分类的实际观察数与某理论次数是否接近,这种检验方法有时也称为无差假说检验。当对连续数据的正态性进行检验时,这种检验又可称
(2)独立性检验是用来检验两个或两个以上因素各种分类之间是否有关联或是否具有独立性的问题。两个因素是指所要研究的两个不同事物。例如性别与对某个问题的态度是否有关系,这里性别是一个因素,分为男女两个类别,态度是另一个因素,可分为赞同、不置可否、反对等多种类别。各因素分类的多少视研究的内容及所
划分的分类标志而定。这种类型的/检验适用于探讨两个变量之间是否具有关联(非独立)或无关(独立),如果再加入另一个变量的影响,即探讨三个变量之间关系时,就必须使用多维列联表分析方法。
(3)同质性检验主要目的在于检定不同人群母总体在某一个变量的反应是否具有显著差异。当用同质性检验检测双样本在单一变量的分布情形,如果两样本没有差异,就可以说两个母总体是同质的,反之,则说这两个母总体是异质的。
6. T 检验、F 检验、卡方各自适用于什么情况?
【答案】(l )t 检验运用于总体分布已知的参数检验法中。需要满足总体正态分布,总体
方差未知的情况下的显著性、差异性检验。比较适合于小样本(这时需要数据符合t
分布。当样本含量n 小时,若观察值x 符合正态分布,则用t 检验(因此时样本均数符合t 分布)。
常见的t 检验形式有:样本均数与总体均数比较的t 检验;配对设计的t 检验;成组设计两样本均数比较的t 检验。
两个小样本均数比较的t 检验有以下应用条件:
①两样本来自的总体均符合正态分布,
②两样本来自的总体方差齐。
因此在进行两小样本均数比较的t 检验之前,要用方差齐性检验来推断两样本代表的总体方差是否相等,方差齐性检验的方法使用F 检验,其原理是看较大样本方差与较小样本方差的商是否接近“1”。若接近“1”,则可认为两样本代表的总体方差齐。判断两样本来自的总体是否符合正态分布,可用正态性检验的方法。若两样本来自的总体方差不齐,也不符合正态分布,对符合对数正态分布的资料可用其几何均数进行t 检验,对其他资料可 用检验或秩和检验进行分析。
(2)F 检验常常用于方差的显著性检验中。要检验两组数据的离散程度是否有显著不同,需要对两组数据的方差进行差异检验。这时数据符合F 分布。在平均数差异检验时,如果不是相关样本,需要进行方差齐性检验。单因方差分析(F 检验)•常用来检验一个变异因素对试验
为正态吻合性检验。
结果的显著性。作为参数检验法的一种,单因方差分析通常需要假设数据为服从正态分布的随机样本和方差齐性。
方差分析的基本条件是:总体正态分布;变异的可加性;各处理内的方差一致。
(3)卡方运用于非参数检验。适用于样本是频数分布的情况。其数据是属于点计而来的离散变量;总体分布未知;不是对总体参数的检验,而是对总体分布的假设检验。计数资料的统计检验主要用卡方检验,可以用来同时检验一个因素两项或多项分类的实际观测数据,与某理论次数分布是否相一致的问题,或有无显著差异的问题;还可用于检验两个或两个以上因素各有多项分类之间,是否有关联或是否具有独立性的问题。
卡方检验用于计数资料的分析,对于数据资料本身的分布形态不作任何假设,所以从一定的意义上来讲,又是一种非参数检验的方法。
7. 各种差异量数各有什么特点?
【答案】(1)标准差计算最严密,它根据全部数据求得,考虑到了每一个样本数据,测量具有代表性,适合代数法处理,受抽样变动的影响较小,反应灵敏。缺点是较难理解,运算较繁琐,易受极端值的影响。
(2)方差的描述作用不大,但是由于它具有可加性,是对一组数据中造成各种变异的总和的测量,通常采用方差的可加性分解并确定属于不同来源的变异性,并进一步说明各种变异对总结果的影响。因此,方差是推论统计中最常用的统计量数。
(3)全距计算简便,容易理解,适用于所有类型的数据,但它易受极值影响,测量也太粗糙,只能反映分布两极端值的差值,不能显示全部数据的差异情况,仅作为辅助量数使用。
(4)平均差容易理解,容易计算,能说明分布中全部数值的差异情况,缺点是会受两极数值的影响,但当数据较多时,这种影响较小,因有绝对值也不适合代数方法处理。
(5)百分位差易理解,易计算,不易受极值影响,但不能反映出分布的中间数值的差异情况,也仅用作补助量数。
(6)四分位差意义明确,计算方便容易,对极端值不敏感,较不受极端值影响。当组距不确定,其他差异量数都无法计算时,可以计算四分位差。但是,四分位差无法反映分布中所有数据的离散状况,不适合使用代数方法处理,受抽样变动影响较标准差大。
通过比较,可以发现标准差、方差价值较大,它们的应用也比较广泛,因此,一般称标准差、方差为高效差异量。相比较而言,其他差异量数,如全距、平均差、百分位差和四分位差等缺点比较明显,应用也受到限制,故称他们为低效差异量数。
8. 探索性因素分析与验证性因素分析有什么区别?
【答案】(1)探索性因素分析(简写为EFA )就是指传统的因素分析。这种因素分析方法对于观察变量因子结构的寻找,并未有任何事前的预设假定。对于因子的抽取、因子的数目、因子的内容以及变量的分类,研究者也没有事前的预期,而是由因素分析的程序去决定。在典型的EFA 中,研究者通过共变关系的分解,找出最低限度的主要成分