2017年北京师范大学1701物理类综合之量子力学复试仿真模拟三套题
● 摘要
一、计算题
1. 已知氢原子在t=0时如下处于状态:
其中,
为该氢原子的第n 个能量本征态。求能量及自旋z 分量的取值概率与平均值,写出t
将t=0时的波函数写成矩阵形式:
>0时的波函数。
【答案】已知氢原子的本征值为:
利用归一化条件:
于是,归一化后的波函数为:
能量的可能取值为
相应的取值几率为:
能量平均值为:
自旋z 分量的可能取值为
相应的取值几率为:
自旋z 分量的平均值为:
f>0时的波函数为:
2. 与电子一样,中子的自旋也是,并且具有磁矩旋角动量,如果中子在相互垂直的两个磁场可能值,对应的几率和平均 值分别是多少? 【答案】该体系中:
和
其中是一个常数,是中子的自中运动,求该体系的能级和波函数,
当能级之间发生跃迁时,可能的跃迁频率有几个,大小是多少?在各本征态中,自旋第三分量的
在
表象中设归一化的本征函数为
则有(能量本征值为):
久期方程为:从而可得:对应能量本征值.
的本征函数满足:
不妨设则此时满足的解为:
同理可得,
对应能量本征值的本征态为:
当发生能级跃迁时,可能的跃迁频率有两个,为(2)在
表像中,
的本征态为:
所以,在
态中:
的几率为:
的几率为:
其平均值为:在
态中:
的几率为:
的几率为:
其平均值为:
3. 若两个中子的相互作用哈密顿为是什么。(设没有外场)
【答案】解法一:
设总自旋
其中g 为作用常数,和
分别为两个中子的自
旋算符, 求分的本征值和本征函数。如果同时计入中子的空间波函数,则两中子体系的总波函数
则:
而两中子的自旋波函数只有四种情况(即有4个本特征态)。 自选交换对称波函数:
自旋交换反对称波函数:
显然
与
对易,二者有共同的本征态:
即的本征值为
的对应波函数为
即的本征值为解法二:选择
时对应的函数为
表象(因为
相互对易)。