2017年天津医科大学流行病与卫生统计学614数学综合之概率论与数理统计考研强化模拟题
● 摘要
一、证明题
1. 设二维随机变量
服从二元正态分布, 其均值向量为零向量, 协方差阵为
是来自该总体的样本, 证明:
二维统计量
该二元正态分布族的充分统计量.
【答案】该二元正态分布的密度函数为
此处,
故
从而
注意到
上式可化解为
于是样本的联合密度函数为
由因子分解定理知, 结论成立.
2. 设
证明:
为独立随机变量序列, 且
服从大数定律.
相互独立, 且
第 2 页,共 41 页
是
【答案】因
故可得马尔可夫条件
由马尔可夫大数定律知 3. 记
证明
【答案】
由
得
4. 设X 为非负连续随机变量,若
(1)(2)
存在,试证明:
服从大数定律.
【答案】(1)因为X 为非负连续随机变量,所以当x<0时,有F (x )=0.利
用
得
(2)因为X 为非负连续随机变量,所以
也是非负连续随机变量,因此利用(1)可得
令
则
第 3 页,共 41 页
5. 设随机变量X 〜b (n ,p ),试证明
:
【答案】
6. 同时掷5枚骰子,试证明:
(1)P (每枚都不一样)=0.0926; (2)P (一对)=0.4630; (3)P (两对)=0.2315; (4)P (三枚一样)=0_1543; (5)P (四枚一样)=0.0193; (6)P (五枚一样)=0.0008. 【答案】同时掷5枚骰子共有(1)
2枚组成“一对”,共有以
(3)先将5枚骰子分成三组,其中二组各有2枚殷子,另外一组只有一枚殷子,又考虑到各有2枚骰子的二组内是不用考虑顺序的,所以5枚骰子分成三组共有而这三组骰子出现的点数都不一样有
种可能,所以所求概率为
(4)这里“三枚一样”是指这三枚以外的2枚骰子不成对,所以先从5枚骰子中任取3枚组成一组,共有(53)种取法,然后这一组骰子与剩下的2枚骰子出现的点数不一样,所以
(5)先从5枚骰子中任取4枚组成一组,然后这一组骰子与剩下的一枚骰子各取不同的数,
第 4 页,共 41 页
个样本点,这是分母,以下分别求之.
(2)这里“一对”是指这一对以外的3枚骰子中不成对且不全相同,所以先从5枚骰子中任取
种取法,然后这“一对”骰子与剩下的3枚骰子出现的点数都不一样,所
种分法,
相关内容
相关标签