2018年新疆农业大学林业研究所601大学数学1之工程数学—线性代数考研核心题库
● 摘要
一、解答题
1.
已知矩阵
可逆矩阵P ,使
和
若不相似则说明理由.
试判断矩阵A 和B 是否相似,若相似则求出
【答案】由矩阵A 的特征多项式
得到矩阵A
的特征值是
由矩阵B 的特征多项式
得到矩阵B
的特征值也是
当
时,由秩
知
A 可以相似对角化.
而
有2个线性无关的解,
即
时矩阵A 有2个线性无关的特征向量,矩阵
时矩阵B 只有1个线性无
只有1个线性无关的解,即
关的特征向量,矩阵B 不能相似对角化. 因此矩阵A 和B 不相似.
2. 设A
为
矩阵
且有唯一解. 证明:
矩阵
的解为【答案】
由
利用反证法,
假设以有
解矛盾,故假设不成立,
则
由
.
得
有
有惟一解知
则方程组
. 即
即
可逆.
为A 的转置矩阵).
易知
于是方程组
为可逆矩阵,
且方程组
只有零解.
使
.
所
只有零
有非零解,即存在
有非零解,这与
3.
已知三元二次型
其矩阵A 各行元素之和均为0, 且满足
其中
(Ⅰ)用正交变换把此二次型化为标准形,并写出所用正交变换; (Ⅱ)若A+kE:五正定,求k 的取值. 【答案】(Ⅰ)因为A 各行元素之和均为0,
即值
,
由征向量.
因为
是
的特征向量.
是
1的线性无关的特
,由此可知
是A 的特征
可知-1是A 的特征值
,不正交,将其正交化有
再单位化,可得
那么令
则有
(Ⅱ)因为A 的特征值为-1, -1, 0, 所以A+kE的特征值为k-l , k-1,k , 由A+kE正定知其特征值都大于0,
得
4.
设矩阵
求一个秩为2的方阵B. 使
【答案】
令
即
取.
进而解得的另一解为
的基础解系为:
专注考研专业课
13年,提供海量考研优质文档!
令
则有. 方阵B
满足题意.
二、计算题
5.
求下列矩阵的特征值和特征向量:
【答案】
所以A
的特征值为
(三重根)
.
对于特征值-1
,解方程(A+E)x=0.因
(2
)
所以A 的特征值为当
时,解方程(A+E)x=0,由
得对应的特征向量当
时,解方程Ax=0, 由
得对应的特征向量当
时,解方程(A —9E )x=0, 由