2018年新疆农业大学林学与园艺学院610大学数学2之工程数学—线性代数考研强化五套模拟题
● 摘要
一、解答题
1. 设n 阶实对称矩阵A
满足
(Ⅰ)求二次型(Ⅱ
)证明[!
【答案】
(Ⅰ)设
由于
从而
的规范形;
是正定矩阵,
并求行列式
的值.
即或
贝
因为A 是
为矩阵A 的特征值,
对应的特征向量为
又因
故有
解得
且秩
实对称矩阵,所以必可对角化,
且秩于是
那么矩阵A 的特征值为:1(k 个),-1(n-k 个).
故二次型
(Ⅱ)因
为
2.
设矩阵.
【答案】
故
的规范形为
所以矩阵B 的特征值是
:
由于B 的特征值全大于0且B 是对称矩阵,因此B 是正定矩阵,
且
求A 的特征值,并讨论A 是否可对角化? 若A 可对角化,则写出其对角
专注考研专业课13年,提供海量考研优质文档!
于是A 的3个特征值为(Ⅰ)当
且
时,A 有3个不同特征值
,故4
可对角化,且可对角化为
(Ⅱ)当a=0
时
,
此时A 有二重特征值1,
仅对
应1个线性无关的特征向量,故此时A 不可对角化.
(Ⅲ
)当
时,
此
时
A
有二重
特征
值
而
仅对应1
个线性无关的特征向量,
故此时A
不可对角化.
3.
设线性方程m
【答案】
对线性方程组的增广矩阵
试就
讨论方程组的解的悄况
,备解时求出其解
.
作初等行变换,
如下
(
1)当
即
且
时
则方程组有惟一答:
(2)当
且
即
且
时
则方程组有无穷多可得其一个特解
解. 此时原方程组与同解,解得其基础解系为
专注考研专业课13年,提供海量考研优质文档!
故原方程组的通解为
(3
)当
(4
)当
即
时
为任意常数. 此时方程组无解. 时
此时方程组无解.
4. 证明n
阶矩阵
与相似.
【答案】
设 分别求两个矩阵的特征值和特征向量为,
故A 的n 个特征值为
且A 是实对称矩阵,则其一定可以对角化,且
所以B 的n
个特征值也为
=-B的秩显然为1,故矩阵B 对应n-1
重特征值
对于n-1
重特征值由于矩阵(0E-B )
的特征向量应该有n-1个线性无关,进一步
矩阵B 存在n 个线性无关的特征向量,即矩阵B 一定可以对角化,且从而可
知n
阶矩阵
与相似.
二、计算题
相关内容
相关标签