2017年大连海洋大学生物医学工程601高等数学Ⅰ之概率论与数理统计考研仿真模拟题
● 摘要
一、证明题
1. 若P (A )=1,证明:对任一事件B ,有P (AB )=P(B ).
【答案】因为
所以由单调性知
从而得
又因为
所以有P (B )-P (AB )=0,即得P (AB )=P(B ).
2. 令X (n ,p )表本服从二项分布b (n ,p )的随机变量,试证明
:
【答案】
3. 证明:若与
【答案】由F 变量的构造知立, 因此F 变量r 阶矩为
, 其中. 由
且v 与W 相互独
容易算得
则当
时有
由此写出E (F )
从而可得当r=l时, 只要
就有
在其他场合, 不存在.
当r=2时, 只要
就有
4. 证明公式
其中
【答案】为证明此公式, 可以对积分部分施行分部积分法, 更加简单的方法是对等号两边分别关于p 求导, 证明其导函数相等.
注意到将等式右边的求导可给出_
而对
k=0.
对
其和前后项之间正好相互抵消, 最后仅留下一项,
也为明了两者导函数相等, 并注意到两者在p=l时都为0, 等式得证.
5. 设是来自二点分布b (1, p )的一个样本,
(1)寻求的无偏估计; (2)寻求p (1-p )的无偏估计; (3)证明1/p的无偏估计不存在. 【答案】(1)是
的一个直观估计,但不是的无偏估计,这是因为
由此可见(2)
是的无偏估计.
是p (1-P )的直观估计,但不是p (1-P )的无偏估计,这是因为
由此可见
(3)反证法,倘若
是p (1-p )的一个无偏估计.
是1/p的无偏估计,则有
或者
上式是p 的n+1次方程,它最多有n+1个实根,而p 可在(0, 1)取无穷多个值,所以不论取什么形式都不能使上述方程在0<p <l 上成立,这表明1/p的无偏估计不存在.
这就证
6. 设总体为如下离散型分布
表
是来自该总体的样本.
(1)证明次序统计量((2)以必有
于是, 对任一组并
满足
中有个
有
表示
【答案】(1)给定(
)是充分统计量;
中等于的个数, 证明(
)的取值
设
)是充分统计量.
中有个
可以为0, 但
该条件分布不依赖于未知参数, 因而次序统计量((2)因为给出(这只要通过令即可实现(这里默认因此,
是充分统计量.
列联表:
1与
,
),
是一一对应的,
)就可算得(
, 反之, 给出)
,
,
也可构造出(
, )
)是充分统计量.
7. 设按有无特性A 与B 将n 个样品分成四类,组成
表
其中n=a+b+c+d,试证明此列联表独立性检验的统计量可以表示成
【答案】检验的假设问题为
与B 是独立的. 统计表示如下:
在原假设成立下,我们计算诸参数的最大似然估计,为
相关内容
相关标签