当前位置:问答库>考研试题

2017年南开大学统计研究院432统计学[专业硕士]考研冲刺密押题

  摘要

一、证明题

1. 设

证明: (1)(2)【答案】(1)由

的有效估计; 是知

的无偏估计,但不是有效估计.

为了获得

的元偏估计的C-R 下界,

是来自正态总体

的一个样本,若均值μ已知,

需要费希尔信息量,大家知道,正态分布的密度函数p (x )的对数是

由此得的费希尔信息量

从而的无偏估计的C-R 下界为

的有效估计.

此下界与上述无偏估计的方

差相等,故此

(2)由于

可见,

即是的无偏估计,其方差为

为了获得的无偏估计的C-R 下界,需要知道的费希尔信息量,由于

的元偏估计的C-R 下界

为故

不是

2. 设

证明:

由于无偏估

的方

的有效估计. 此处

,的无偏估计的C-R

下界与

的方差的比为

该比值常称为无偏估计的效.

为独立随机变量序列, 且

服从大数定律.

相互独立, 且

所以

【答案】因为

由此可得马尔可夫条件

由马尔可夫大数定律知

服从大数定律.

存在,试证明:

(1)(2)

3. 设X 为非负连续随机变量,若

【答案】(1)因为X 为非负连续随机变量,所以当x<0时,有F (x )=0.利

(2)因为X 为非负连续随机变量,所以

也是非负连续随机变量,因此利用(1)可得

4. 设X 〜N (0, 1), Y 各以0.5的概率取值±1, 且假定X 与Y 相互独立. 令

(1)

(2)X 与Z 既不相关也不独立. 【答案】(1)由全概率公式可得

证明:

所以Z 〜N (0, 1).

(2)因为E (X )=0, E (Y )=0, 且X 与Y 相互独立, 所以

所以X 与Z 不相关. 为证明X 与Z 是不独立的, 我们考查如下特定事件的概率, 且对其使用全概率公式

考虑到而

所以

故有

即X 与Z 不独立.

成立.

5. 设A ,B 为任意两个事件,且

【答案】

6. 设

为独立的随机变量序列, 证明:若诸服从大数定律.

的方差一致有界, 即存在常数c 使得

【答案】因为

所以由马尔可夫大数定律知

服从大数定律.

7. 设0

【答案】先证必要性:因为A 与B 独立,所以再证充分性:由

,所以A 与B 独立. 由此得P (AB )=P(A )P (B )

8. 设连续随机变量

独立同分布, 试证:

【答案】设诸而事件

从而该事件的概率为

独立,由此得

的密度函数为P (x ), 其联合密度函数为.