当前位置:问答库>考研试题

2017年南开大学数学科学学院847概率论与数理统计考研仿真模拟题

  摘要

一、计算题

1. 设回归模型为

试求

的最大似然估计,它们与其最小二乘估计一致吗?

【答案】似然函数为

其对数似然函数为

导并令导函数为0,得到如下似然方程组

经过整理可以解出

可以看到

的最大似然估计与其最小二乘估计是一致的.

,将其分别对(忽略常数项)

2. 一批产品分一、二、三级,其中一级品是二级品的三倍,三级品是二级品的一半,从这批产品中随机地抽取一件,试求取到三级品的概率.

【答案】设取到三级品的概率为P ,则取到二级品的概率为2p ,取到一级品的概率为6p ,

解得P=l/9.

3. 甲口袋有a 个白球、b 个黑球,乙口袋有n 个白球、m 个黑球.

(1)从甲口袋任取1个球放入乙口袋,然后再从乙口袋任取1个球. 试求最后从乙口袋取出的是白球的概率;

(2)从甲口袋任取2个球放入乙口袋,然后再从乙口袋任取1个球. 试求最后从乙口袋取出的是白球的概率.

【答案】记事件A 为“从乙口袋取出的这个球是白球 (1)对甲口袋取出的球是白球或黑球,使用全概率公式可得

(2)对甲口袋取出的两个球分三种情况:两个白球、一黑一白、两个黑球. 使用全概率公式可得

4. 学生完成一道作业的时间X 是一个随机变量,单位为小时. 它的密度函数为

(1)确定常数c ; (2)写出X 的分布函数;

(3)试求在20分钟内完成一道作业的概率; (4)试求10分钟以上完成一道作业的概率. 【答案】(1)因为由此解得c=21. (2)当x<0时,当

时,

当x>0.5时,所以X 的分布函数为

(3)所求概率为(4)所求概率为

5. (泊松大数定律)设的概率为

为n 次独立试验中事件A 出现的次数, 而事件A 在第i 次试验时出现

则对任意的

, 有

【答案】记

所以由切比雪夫不等式, 对任意的有

6. 把一颗骰子独立地掷n 次, 求1点出现的次数与6点出现次数的协方差及相关系数.

【答案】记

则1点出现的次数从而有

欲求

, 故先求

. 由于

且因为和

均为仅取0, 1值的随机变量, 所以

由此得综上可得

X 与Y 负相关是可以理解的, 因为在掷n 次骰子中, 1点出现次数多必使6点出现次数少.

7. 已知维尼纶纤度在正常条件下服从正态分布,且标准差0.048, 从某天产品中抽取5根纤维,测得其纤度为

问这一天纤度的总体标准差是否正常(取

)?

【答案】这是一个关于正态总体方差的双侧检验问题,待检验的原假设和备择假设分别为

此处n=5, 若取显著性水平查表知故拒绝域为

由样本数据可计算得到

因此拒绝,认为这一天纤度的总体标准差不正常.

6点出现的次数

(第i 次投掷

时, 不可能既出现1点、同时又出现6点), 因此当i=j时, 有

而当

时, 由于

与相互独立, 所以