当前位置:问答库>考研试题

2017年上海理工大学理学院811概率论与数理统计考研强化模拟题

  摘要

一、证明题

1. 设分布函数列敛于分布函数F (x ).

【答案】

对任意的点

:

则有

(1)

这时存在N , 使得当n>N时, 有

对任意的当

时, 有

由(1), (3)式可得

即有

, 结论得证.

则X 与Y 有函数关系. 试证:X

2. 设随机变量X 服从区间(一0.5, 0.5)上的均匀分布, 与Y 不相关, 即X 与Y 无线性关系.

【答案】因为

所以

即X 与Y 不相关.

3. 设罐中有b 个黑球、r 个红球,每次随机取出一个球,取出后将原球放回,再加入同色的球. 试证:第k 次取到黑球的概率为

【答案】

设事件设

则显然有

则由全概率公式得

把k 次取球分为两段:第1次取球与后k-1次取球. 当第1次取到黑球时,罐中增加c 个黑球,这时从原罐中第k 次取到黑球等价于从新罐(含b+c个黑球,r 个红球)中第k-1次取到黑球,故

弱收敛于连续的分布函数F (x ), 试证:

取M 充分大,

使有当

使有

时,

再令

上一致收

时,

,

对上述取定的M , 因为F (x )在闭区间[-M, M]上一致连续, 故可取它的k 个分

必存在某个i , 使得由(2)式知,

下用归纳法证明.

为“罐中有b 个黑球、r 个红球时,第i 次取到是黑球”,

类似有

所以代入(1)式得

由归纳法知结论成立.

4. 设连续随机变量x 的密度函数p (x )是一个偶函数,F (x )为X 的分布函数,求证对任意实数a>0,有

(1)(2)(3)且从(1)在

所以

(2)

(3)

5. 设

证明:

为独立随机变量序列, 且

服从大数定律.

相互独立, 且

由此可得马尔可夫条件

由马尔可夫大数定律知

服从大数定律.

所以

【答案】因为

【答案】因为p (X )是一个偶函数,所以P (-x )=P(x )

6. 设由可建立一元线性回归方程,是由回归方程得到的拟合值,证

明:样本相关系数r 满足如下关系

上式也称为回归方程的决定系数. 【答案】因为

将之代入样本相关系数r 的表达式中,即有

证明完成.

7. 设随机变量量.

【答案】

, 两边取对数, 并将

所以

正是

的特征函数, 由特征函数的唯一性定理及判断弱

, 则由X 的特征函数

..

展开为级数形式, 可得

, 证明:当

时, 随机变量

按分布收敛于标准正态变

收敛的方法知结论成立.

8. 设X 〜N (0, 1), Y 各以0.5的概率取值±1, 且假定X 与Y 相互独立. 令

(1)

(2)X 与Z 既不相关也不独立. 【答案】(1)由全概率公式可得

所以Z 〜N (0, 1).

(2)因为E (X )=0, E (Y )=0, 且X 与Y 相互独立, 所以

证明:

所以X 与Z 不相关. 为证明X 与Z 是不独立的, 我们考查如下特定事件的概率, 且对其使用全概率公式

相关内容

相关标签