2017年南开大学数学科学学院847概率论与数理统计考研冲刺密押题
● 摘要
一、计算题
1. 为研究咖啡因对人体功能的影响,特选30名体质大致相同的健康男大学生进行手指叩击训练,此外咖啡因选三个水平:
每个水平下冲泡10杯水,外观无差别,并加以编号,然后让30位大学生每人从中任选一杯服下,2h 后,请每人做手指叩击,统计员记录其每分钟叩击次数,试验结果统计如下表:
表
1
请对上述数据进行方差分析,从中可得到什么结论?
【答案】我们知道,对数据作线性变换不会影响方差分析的结果,这里将原始数据同时减去240,并作相应的计算,计算结果列入下表:
表
2
于是可计算得到三个平方和
把上述诸平方和及其自由度填入方差分析表,并继续计算得到各均方以及F 比:
表3
若
取查表
知从而拒绝域
为由
于
故认为因子A (咖啡因剂量)是显著的,即三种不同剂量对人的作用有明显
的差别. 此处检验的p 值为
2. —批产品的不合格品率为0.02,现从中任取40件进行检查,若发现两件或两件以上不合格品就拒收这批产品. 分别用以下方法求拒收的概率:(1)用二项分布作精确计算;(2)用泊松分布作近似计算.
【答案】记X 为抽取的40件产品中的不合格品数,则
(1)拒收的概率为
(2)因为
所以用泊松分布作近似计算,可得近似值为
可见近似值与精确值相差0.0007,近似效果较好.
3. —本500页的书共有500个错误,若每个错误等可能地出现在每一页上(每一页上至少有500个印刷符号). 试求指定的一页上至少有三个错误的概率.
【答案】设X 为指定一页上错误的个数,贝U
且p=l/500.所求的概率为
利用二项分布的泊松近似,取
于是上述概率的近似值为
4.
设
是来自韦布尔分布
,
的样本(m>0已知), 试
而“拒收”
就相当于
给出一个充分统计量.
【答案】样本的联合密度函数为
若
令理,
是
,
取
的充分统计量.
,
, 由因子分解定
5. 口袋中有7个白球、3个黑球.
(1)每次从中任取一个不放回,求首次取出白球的取球次数X 的概率分布列;
(2)如果取出的是黑球则不放回,而另外放人一个白球,此时X 的概率分布列如何. 【答案】X 为首次取到白球的取球次数,则X 的可能取值为1,2,3,4. 记,i=1,2,…,10. 出的球为黑球”
(1)由乘法公式可得
将以上计算结果列表为
表
1
(2)如果取出黑球不放回,而另外放入一个向球,则由乘法公式得
将以上计算结果列表为
表
6. 设
为“第i 次取
如果
得1-p=3p(1-p ).
求P (X=0).
所以由
,则P (X=l)=1-p,
因为
【答案】记p=P(X=0)
由此解得p=l/3或p=l.因为p=l导致X 为单点分布,即X 几乎处处为0,这无多大实际意义,故舍去. 所以得
7. 已知某种材料的抗压强度下:
(1)求平均抗压强度的置信水平为95%的置信区间; (2)若已知
求平均抗压强度的置信水平为95%的置信区间;
s=35.2176在未知时,的置信水平为95%的置信区间为
,现随机地抽取10个试件进行抗压试验,测得数据如
(3)求的置信水平为95%的置信区间. 【答案】(1)经计算得,
相关内容
相关标签