2017年首都师范大学基础数学数学物理数学教育(二)之理论力学教程复试仿真模拟三套题
● 摘要
一、计算题
1. 图(a )所示机构,在水平面内运动,曲柄与连杆均可看作均质杆,OC 杆质量为m ,AB 杆质量为2m , 长度OC=AC=CB=R,滑块A ,B 的质量也为m. 曲柄OC 上连接一扭转弹簧,其扭转刚度系数为k. 不计系统的摩擦,
时系统处于平衡位置,现在A
处作用一周期性谐变力
P 为常值. 求系统产生共振时扭转弹簧的刚度系数
k.
图
【答案】由产生共振的条件,系统的固有频率与干扰力频率相等时才能产生共振,应求出系统的固有频率. 采用拉格朗日方程建立系统运动微分方程的方法求固有频率.
系统具有一个自由度,先分析运动学关系,如图(b )所示,有
系统的动能为
整理后得
以系统的静平衡位置
为系统的零势能点,则系统的势能为
拉格朗日函数为
将拉格朗日函数代入拉格朗日方程
运算以后整理得
所以系统的固有频率为
由共振时的条件,
得扭转弹簧的刚度系数为
2. 直角形曲柄OBC 绕垂直于图面的轴O 在允许范围内以匀角速度Q 转动,带动套在固定直杆0A 上的小环M 沿直杆滑动,
如图所示。已知速度和加速度。
试求当
时,小环M 的
图
【答案】已知几何关系
所以小环M 的速度和加速度分别为
3. 在图所示系统中,均质圆盘A 、B 重量都是P (质量都为m ), 半径均为r ,两圆盘中心连线OC 为水平线,盘A 上作用一力矩为M (常量)的一力偶;重物D 重量为Q 。绳重不计,绳不可伸长,盘B 作纯滚动,初始时系统静止。
求:重物D 下落距离h 时重物的速度与加速度。
图
【答案】(1)受力分析和运动分析 A 作定轴转动,其动能为
B 作平面运动,其动能为
D 作平动,其动能为
(2)动能
(3)动能定理
对式①求导得
4. 如图1所示, 三脚圆桌的半径为r=500mm, 重为P=600N。圆桌的三脚A , B 和C 形成一等边三角形。若在中线CD 上距圆心为a 的点M 处作用铅直力F=1500N, 求使圆桌不致翻倒的最大距离a 。
图1
【答案】当圆桌刚好处于不翻到的临界状态时, 如图2所示, 为了避免对力
力
得
的计算, 对AB 轴取矩, 由平衡方程